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Abstract 

Background The Berlin definition of acute respiratory distress syndrome (ARDS) includes only clinical characteristics. 
Understanding unique patient pathobiology may allow personalized treatment. We aimed to define and describe 
ARDS phenotypes/endotypes combining clinical and pathophysiologic parameters from a Canadian ARDS cohort.

Methods A cohort of adult ARDS patients from multiple sites in Calgary, Canada, had plasma cytokine levels and clin-
ical parameters measured in the first 24 h of ICU admission. We used a latent class model (LCM) to group the patients 
into several ARDS subgroups and identified the features differentiating those subgroups. We then discuss the sub-
group effect on 30 day mortality.

Results The LCM suggested three subgroups (n1 = 64, n2 = 86, and n3 = 30), and 23 out of 69 features made these 
subgroups distinct. The top five discriminating features were IL-8, IL-6, IL-10, TNF-a, and serum lactate. Mortality 
distinctively varied between subgroups. Individual clinical characteristics within the subgroup associated with mortal-
ity included mean  PaO2/FiO2 ratio, pneumonia, platelet count, and bicarbonate negatively associated with mortality, 
while lactate, creatinine, shock, chronic kidney disease, vasopressor/ionotropic use, low GCS at admission, and sepsis 
were positively associated. IL-8 and Apache II were individual markers strongly associated with mortality (Area Under 
the Curve = 0.84).

Perspective ARDS subgrouping using biomarkers and clinical characteristics is useful for categorizing a heteroge-
neous condition into several homogenous patient groups. This study found three ARDS subgroups using LCM; each 
subgroup has a different level of mortality. This model may also apply to developing further trial design, prognostica-
tion, and treatment selection.
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Introduction
Acute respiratory distress syndrome (ARDS) is a com-
mon clinical condition in the intensive care unit (ICU) 
and a significant cause of morbidity and mortality [1–3]. 
ARDS represents 10.4% of all ICU admissions world-
wide, affecting 23.4% of all patients requiring mechani-
cal ventilation [4]. ARDS-related mortality before ICU 
discharge has been estimated at 35.3% overall, including 
29.7, 35.0, and 42.9% for mild, moderate, and severe dis-
eases, respectively. Despite ARDS’s clinical, societal, and 
economic burden, there is no specific therapy, and the 
mainstay of management is supportive care [5].

ARDS is an acute onset of non-cardiogenic pulmonary 
edema, bilateral pulmonary infiltrates, and hypoxemia [5, 
6]. The definition, including the most recent consensus 
nominally known as the Berlin criteria, describes clinical 
characteristics without considering the pathophysiologi-
cal processes leading to lung injury. Although pneumonia 
and sepsis are common causes, ARDS is a complex het-
erogeneous syndrome [5, 7, 8]. The most recent example 
of the heterogeneity of ARDS is COVID-19. Although 
COVID-19 patients have oxygenation and radiographic 
characteristics that meet the clinical criteria of ARDS, 
many other parameters (such as ventilatory mechanics 
and inflammatory mediator profiles) appear to be differ-
ent [9, 10]. In addition, despite a common etiologic cause, 
more than one disease subtype has been described. 
Although ARDS has heterogeneous causes and manifes-
tations, diffuse alveolar damage (DAD) is the histologic 
hallmark [7]. However, using accepted pathologic cri-
teria [11, 12], DAD is identified in approximately half of 
the biopsy samples from patients diagnosed with ARDS 
[3]. Other investigators have suggested ways of subdi-
viding the disease [13–15] to improve the identification 
of patients at risk for ARDS, improve prognostication, 
develop targeted therapy, and inform clinical trial design 
[16].

Endotyping is one approach to stratify patients. Bio-
markers are an attractive tool for identifying different 
ARDS subtypes and have been a focus of study in the past 
decade [4]. Therapy-directed genotyping using circulat-
ing biomarkers has proven to be an emerging strategy for 
targeted oncologic therapy but is infrequently utilized in 
critical care, specifically in ARDS-based research. Recent 
studies regrouping clinical characteristics and biomark-
ers have identified two distinct biological subgroups of 
ARDS [15, 17, 18]. These subgroups appear to be associ-
ated with explaining differential outcomes when applied 
in retrospective studies. These early studies offer prom-
ise for the potential of genotyping and studying poten-
tial mechanisms of ARDS. However, studies to date have 
not included patients from heterogeneous regions. Our 
study aimed to identify clusters in a Canadian-based 

ARDS patient population using a combination of clinical 
characteristics and blood biomarkers, examine any asso-
ciation with mortality, and describe similarities or differ-
ences with prior published ARDS subgroups.

Methods
Study design
This is an observational, cross-sectional study of adult 
patients (> 17  years of age) with ARDS entered into the 
Critical Care Epidemiologic and Biologic Tissue Resource 
(CCEPTR) tissue bank at the University of Calgary. 
Written informed consent was obtained from each sub-
ject and/or their legal surrogates before data collection 
and sample storage according to the Conjoint Health 
Research Ethics Board of the University of Calgary, 
REB15-0348_MOD5).

Description of the cohort
The samples and clinical data were collected from adult 
subjects (> 17 years of age) following ICU admission for 
suspected infection/sepsis at Foothills Medical Centre or 
Peter Lougheed Centre; both tertiary care academic mul-
tisystem intensive care units in Calgary, Alberta, Canada.

Patients were identified as having ARDS and included 
in the study if they were on mechanical ventilation on the 
first day of their ICU stay, had  PaO2/FiO2 ratios ≤ 300 and 
had a chest X-ray confirming alveolar infiltrates in more 
than one quadrant. Patients were excluded if they had 
one of (1) a diagnosis of congestive heart failure (CHF) 
defined by ejection fraction (E.F.) < 40% on echocardiog-
raphy or the attending team gave a diagnosis of CHF, (2) 
if they were immunocompromised, or (3) if the patient 
died within 24 h of study enrollment.

Clinical data collection
Clinical data on all patients were extracted from an ICU-
specific integrated bedside clinical information system 
(Metavision, iMDsoft, Tel Aviv Israel), which prospec-
tively captured clinical demographic and physiologic 
devices data, including ventilation parameters and meas-
ures, laboratory results, and outcome data. We have 
previously validated this information system by manual 
audit as a reliable data source for quality improvement 
and research. Fifty total potential clinical covariates were 
identified, including 13 risk factors, 12 comorbidities, 10 
clinical laboratory results, eight non-respiratory clinical 
measures, and seven ventilatory parameters.

Biomarker selection and assay procedures
A priori, we identified 12 biomarkers for analysis. The 
biomarkers were selected considering four broad criteria: 
(1) are a potential measure of lung epithelial injury (e.g., 
RAGE), (2) are a marker of inflammatory injury including 
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endothelial injury [e.g., plasminogen activator inhibitor-1 
(PAI-1)], (3) assay validated in our laboratory, and/or (4) 
have been identified in prior work of interest in identify-
ing hyperinflammatory or hypo-inflammatory endotypes 
in ARDS [14]. Plasma samples were collected within 24 h 
of ICU admission/ARDS diagnosis. Samples were ali-
quoted into 250 µl aliquots and frozen at − 80 °C for sin-
gle use [19]. We measured protein C (P.C.) antigen levels 
quantified by a sandwich-style ELISA from plasma sam-
ples using a matched-pair antibody set (Affinity Biologi-
cals, Ancaster, ON, Canada). The levels of the remaining 
biomarkers were measured by electrochemiluminescence 
technology using a Meso QuickPlex SQ 120 instrument 
(Meso Scale Discovery) equipped with Discovery Work-
bench 4.0 software for data acquisition and analysis.

Variables available for analysis
The variables entered in the model were chosen based on 
the presence of at least one of the following: (1) are rou-
tinely measured in a clinical setting, (2) are biomarkers 
previously identified as having a putative role in ARDS 
pathophysiology, and (3) represented a distinguishing 
feature of ARDS.

Statistical analysis
The baseline characteristics are described using descrip-
tive statistics with measures of central tendency (median) 
and dispersion (interquartile range, IQR) for continuous 
variables and counts and percentages for categorical vari-
ables. Continuous variables with more than 20% missing 
values were excluded, and the MICE package was used to 
impute missing values. They were then transformed into 
a logarithm scale and standardized with mean zero and 
unit variance. Risk factors and comorbidity conditions 
with a single level were also excluded. Binary indicators 
for risk factors and comorbidity conditions coded posi-
tively in less than 10% of cases were removed. We also 
excluded highly collinear features whose Pearson corre-
lation coefficient was greater than 0.9. Finally, functional 
variables were excluded. For example, APACHE II was 
collected as a clinical descriptor but not included in ana-
lytical models as it is derived from the other clinical vari-
ables. After following the exclusion criteria, 51 variables 
(33 continuous and 18 discrete variables) were available 
in the study, and they are listed in Table 1. In the table, 
we have included variables with missing values and those 
that underwent imputation for information.

A latent class model (LCM) proposed by Marbec et al. 
was employed with the VarSelLCM package [20, 21] 
since this model permits cluster analysis with mixed-type 
data and simultaneously identifies the most discrimina-
tive variables. In addition, the model supports two sce-
narios when the number of variables is smaller or larger 

than the number of samples. The Bayesian information 
criterion (BIC) and maximum integrated complete-data 
likelihood (MICL) criterion were utilized in choosing 
the optimal number of clusters. A discriminating power 
index ranked the input variables. A Kaplan–Meier esti-
mator was employed to explore the difference in 30 day 
mortality by the clusters found by LCM. We also calcu-
lated the information value (IV) to rank the input feature 
in terms of the importance of predicting mortality, using 
0.3 as a threshold of clinical association [22]. All analy-
ses were carried out using standard statistical software, 
R-4.0.0, with the packages VarSelLCM, survival, stats, 
MASS, and Information.

To compare our analysis and model with previous 
models, we cross-classified our clustering results to the 
hyper- and hypo-inflammatory subphenotypes suggested 
by Sinha et  al. (2020) [18] and this is presented in the 
results.

Results
Characteristics of study cohort
Two hundred eight patients were identified with a  PaO2/
FiO2 (P/F) ratio of less than 300, of which 28 patients 
were excluded as 14 had chest X-rays that did not have 
more than one quadrant of disease, nine were not receiv-
ing mechanical ventilatory support, and five were mis-
classified (CHF was present or suspected).

A description of the demographics, clinical, and bio-
marker characteristics of the study cohort is shown in 
Table 1. 58.9% were male, with a median age [IQR] of 60 
[51, 71]. The most common contributing cause of ARDS 
was sepsis (85.6%), of which 29.6% (44/154) was from 
a pulmonary source. Aspiration was the cause in 10% 
of patients, transfusion-associated lung injury in 6.1%, 
pancreatitis in 3.9%, and shock associated with trauma 
in 1.7%. Many patients had comorbidities, the most 
common including chronic respiratory disease, coro-
nary atherosclerosis, alcohol use disorder, and diabetes. 
Twenty-two patients (12.2%) had a prior heart failure his-
tory (without evidence of acute hydrostatic pulmonary 
edema on this ICU admission). The median Apache II 
score was 22 [18, 28]. Vasopressors were used for 79.4% 
of the patients. The median P/F ratio was 170 [96, 240]. 
Ventilatory parameters included a median PEEP value of 
10 [8, 12] cm  H2O with a median tidal volume of 590 mL 
[520, 630] for men and 480 mL[430, 520] for women, and 
the median plateau was 26 cm  H20 [22, 31]. The median 
lactate was 1.7 mmol/L [1.2, 3.3], with a white blood cell 
count of 12.9 [7.8, 19.7] and a platelet count of 181 [116, 
251] and serum creatinine of 98 mmol/L [67, 180]. Forty-
four (24%) of patients died in ICU. The median ICU 
length of stay was 10 days [6, 18.3].
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Table 1 Descriptive summary of all baseline characteristics used as input for clustering analysis—Clinical variables, comorbidities, risk 
factors, mechanical ventilation, lab results, biomarkers, and endpoints

Clinical variables N = 180 Nmiss After imputation

Age (years) 59.50 [49.75, 71.00] 0

Female sex (%) 74 (41.1%) 0

BMI (kg/m2) 29.0 [24.78, 34.10] 24 28.90 [25.40, 34.13]

Heart rate (beats/minute) 100.0 [82.50, 113.5] 5 100.0 [85.25, 114.0]

APACHE II 22 [18, 28] 7 NA

GCS 49 (27.2%) 0

Vasopressor use 143 (79.4%) 0

Prone 4 (2.2%) 0

Ionotrope 33 (18.3%) 0

Comorbidity

 Alcohol use disorder 46 (25.6%) 0

 Cardiovascular accident 12 (6.7%) 0

 Chronic kidney disease 23 (12.8%) 0

 Chronic liver disease 21 (11.7%) 0

 Chronic obstructive pulmonary disease 45 (25.0%) 0

 Coronary arterial disease 38 (21.1%) 0

 Diabetes 44 (24.4%) 0

 Heart failure 22 (12.2%) 0

ARDS trigger

 Aspiration 18 (10.0%) 0

 Hypovolemic or distributive (not sepsis) shock 76 (42.2%) 0

 Pneumonia 110 (61.1%) 0

 Sepsis 154 (85.6%) 0

 Surgery abdominal 45 (25%) 0

Mechanical ventilation

 Respiratory rate (breaths/min) 22 [15, 25] 8 22 [15, 25]

 PF ratio 172.5 [96, 235.8] 0

 Plateau pressure (cm  H2O) 27 [22, 31] 6 27 [22, 31]

 PEEP (cm  H2O) 10 [8.0, 12] 10 10 [8, 12]

 Tidal volume (mL) 540 [460, 610] 11 544 [467.3, 613.5]

 Minute ventilation (L/min) 12 [10, 13] 10 12 [10, 13]

Lab results

 Blood glucose (mmol/L) 7.70 [6.30, 9.45] 1 7.7 [6.30, 9.43]

 Serum lactate (mmol/L) 1.7 [1.2, 3.3] 1 1.7 [1.2, 3.3]

 White blood cell count (×  109/L) 12.90 [7.8, 19.70] 5 12.85 [7.68, 19.65]

 Platelet count (×  109/L) 181 [116, 251] 6 183 [116, 245]

 Hematocrit 0.33 [0.29, 0.38] 0

 Sodium (mmol/L) 139 [137, 143] 0

 PaCO2 (mmHg) 37 [32, 44] 0

 Bicarbonate (mmol/L) 20 [16, 23] 0

 Creatinine (µmol/L) 97.5 [66.8, 181.0] 4 97.5 [66.75, 175.0]

Biomarker

 Protein C (IU/ml) 63.17 [45.00, 87.56] 3 63.26 [44.81, 87.63]

 IL-6 (pg/ml) 152.6 [30.29, 1072] 4 141.0 [30.01, 1072]

 IL-8 (pg/ml) 61.17 [19.25, 286.3] 4 61.17 [18.97, 286.3]

 IL-10 (pg/ml) 7.05 [2.24, 20.00] 4 6.92 [2.24, 20.0]

 TNF-α (pg/ml) 8.220 [4.358, 19.27] 4 8.27 [4.45, 18.75]

 ANG-2 (ng/ml) 23750 [14520, 54630] 4 23300 [13810, 54630]
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Cluster analysis for subgroup identification
We fitted a model to the data by changing the number of 
subgroups. The model with three subgroups shows the 
maximum BIC and MICL values (as shown in Table  S1 
and Figure S1). Twenty-three variables were selected as 
discriminatory from this model: 8 were clinical measures, 
3 were risk factors, and 11 were biomarkers (Table  2). 
Patients in Group 1 (Group 1 vs. Total) appeared dif-
ferent across multiple variables. For example, the heart 
rate [median] was lower [88 vs. 100], vasopressors were 
used less frequently (57.1 vs. 79.4%), had better P/F ratios 
(197.0 vs. 172.5), lower serum lactate levels (1.10 vs. 1.7), 
higher platelet counts (236 vs. 181) and less kidney injury 
as measured by serum creatinine. Endotype subgroup 
1 had evidence of lower biomarkers, including lower 
inflammatory markers (e.g., TNFa, TNF-R1, Il-6, IL-8), 
lower anti-inflammatory markers (e.g., Il-10), and lower 
endothelial/coagulation biomarkers (e.g., vWF, ICAM-
1, PAI-1), as shown in Fig. 1. When considered in isola-
tion, RAGE, a lung epithelial biomarker, was comparable 
across sub-groups. When variables with binary results 
were only evaluated in the LCM, only two subgroups 
were evident; however, when continuous variables were 
also considered, there was an evident difference with 
three subgroups that appeared (Fig. 2). The three endo-
types are distinct in terms of the risk of ICU-associated 
mortality, with Group 1 having no mortality (0%), ICU 
Group 2 having a 29% ICU mortality, and Group 3 hav-
ing a 63% mortality before ICU discharge; Group 3 had 
an earlier and higher rate of death (Fig. 3).

We cross-classified our clustering results to the hyper- 
and hypo-inflammatory subphenotypes suggested by 
Sinha et al. (2020) [18] (Table S2). We observed 98–100% 

exact matches between Group 1 (mild) and hypo-inflam-
matory subtype and 100% between Group 3 (severe) 
and hyper-inflammatory subtype. For both models, 86 
patients of Group 2 (moderate) are spread almost equaly 
between the hyper- and hypo-inflammatory groups 
(Table S2).

Discussion
We simultaneously performed subgroup identification 
and variable selection using a single-step latent class 
model. Our work suggests that there are more than 
two ARDS subgroups. As has been reported in seminal 
studies, ARDS patients in this study appear to have an 
endotype that is either hypo-inflammatory (Endotype 
1) or hyper-inflammatory (Endotypes 2 and 3) [15]. Our 
results are consistent with these findings but suggest that 
there may be a distinction in the hyper-inflammatory 
endotype identifying a group with a substantially higher 
mortality risk (Endotype 3). The separation between 
endotypes becomes evident by adding continuous varia-
bles (predominantly physiologic and biomarkers) to clini-
cal binary variables (cause of shock, cause of ARDS, use 
of vasopressors) as discriminatory determinants in the 
model. For example, the hypo-inflammatory endotype 
has less vasopressor use, higher P/F ratios at baseline, 
lower serum lactate levels, and less evidence of kidney 
injury. Pro-inflammatory and anti-inflammatory marker 
differences between endotypes do not easily correspond 
with hypo- or hyper-inflammatory states. For example, 
IL-6 is higher in the hyperinflammatory endotype, yet 
IL-10 is much higher in at least the hyperinflammatory 
endotype three than the hypo-inflammatory endotype 
1. Despite prior work by others identifying a role for 

Table 1 (continued)

Clinical variables N = 180 Nmiss After imputation

 RAGE (pg/ml) 1112 [509.4, 2602] 4 1062 [491.2, 2528]

 vWF (pg/ml) 543400 [184200, 1399000] 4 546900 [184200, 1429000]

 TNF-R1 (ng/ml) 17660 [8400, 27560] 4 17660 [8291, 28560]

 ICAM-1 (ng/ml) 791600 [553100, 1121000] 4 788700 [540900, 1101000]

 PAI-1 (ng/ml) 119500 [50460, 382100] 4 119500 [50460, 367500]

 SPD (ng/ml) 3313 [1446, 7065] 4 3313 [1512, 7227]

EndPoint

 ICU mortality 44 (24%) 0

 ICU length of stay (Days) 10.0 [6.0, 18.8] 0

 Days of ventilation 8.00 [5.00, 14.00] 0

Data are reported by frequency and proportion (%) for discrete variables and median and interquartile range [Q1, Q3] for continuous variables

APACHE Acute Physiology and Chronic Health Evaluation, BMI body mass index, ICU Intensive Care Unit, PF ratio of partial pressure of arterial oxygen to inspired 
oxygen percentage, PEEP positive end-expiratory pressure, PaCO2 partial pressure of arterial carbon dioxide, IL interleukin, TNF-α tumor necrosis factor α, ANG-2 
Angiopoietin 2, RAGE receptor of advanced glycation end products, vWF von Willelbrand factor, TNF-R1 tumor necrosis factor receptor 1, ICAM-1 intercellular adhesion 
molecule-1, PAI-1 plasminogen activator inhibitor-1, SPD surfactant protein D and Prot C Protein C, Nmis the number of missing values per variable before imputation, 
After imputation summary statistics after imputation per variable
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RAGE—a biomarker relatively specific to lung epithelial 
injury, our results do not identify this biomarker in isola-
tion as different between subgroups.

ARDS endotyping has undergone significant research 
over the last 10 years. Sequential findings have helped us 
understand how ARDS phenotypes can be detected and 
how they may be applied to different ARDS therapies. In 
2014, Calfee et al. described the use of latent class meth-
odology to identify two subphenotypes of ARDS, one 
of which was characterized as having more inflamma-
tion, shock, and metabolic acidosis, called Phenotype 2 

(hyperinflammatory), and it was found to have a worse 
clinical outcome than Phenotype 1 (hypo-inflammatory) 
[15]. These phenotypes were derived from patient infor-
mation from the ARMA trial (a trial of low vs high tidal 
volume). Three variables were found to differentiate 
these phenotypes (IL-6, sTNF-R1, and vasopressor use). 
Importantly, these phenotypes were validated and were 
found retrospectively to have a differential response to 
PEEP in patients from the ALVEOLI Trial (high vs low 
PEEP). In 2015, Calfee et  al., using plasma biomark-
ers of lung epithelial and endothelial injury as well as 

Table 2 Sub-group characteristics of the features found by the latent class modeling approach. Score = the value of information 
criterion, MICL, for clustering

Data are reported by frequency and proportion (%) for discrete variables and median and interquartile range [Q1, Q3] for continuous variables

BMI body masse index, PEEP positive and expiratory pressure, IL interleukin, TNF-α tumour necrosis factor α, ANG-2 Angiopoietin 2, RAGE receptor of advanced 
glycation end products, vWF von Willelbrand factor, TNF-R1 tumour necrosis factor receptor 1, ICAM-1 intercellular adhesion molecule-1, PAI-1 plasminogen activator 
inhibitor-1, SPD surfactant protein D and Prot C Protein C

Name Score Group 1 (Mild) Group 2 (Moderate) Group 3 (Severe) P-value
N = 64 N = 86 N = 30

Clinical observation

 1 Heart rate (beats/min) 3.02 88.50 [74.50, 101.5] 104.5 [90.75, 116.25] 111.0 [99.00, 122.0]  < 0.001

 2 Vasopressor use 11.64 37.0 (57.8%) 77.0 (89.5%) 29.0 (96.7%)  < 0.001

Lab results

 3 Glycemia (mmol/L) 4.16 7.50 [6.50, 9.20] 8.25 [6.43, 10.30] 5.55 [4.62, 8.05]  < 0.001

 4 Lactate (mmol/L) 60.34 1.10 [0.80, 1.50] 2.10 [1.40, 3.20] 5.80 [3.70, 9.30]  < 0.001

 5 White blood cells (×  109/L) 13.05 12.85 [9.67, 18.90] 13.85 [7.15, 20.83] 6.80 [2.30, 19.20] 0.085

 6 Platelet count (×  109/L) 20.57 233.0 [176.25, 296.50] 168.50 [111.0, 231.0] 101.5 [52.75, 158.5]  < 0.001

 7 HCO3 (mmol/L) 29.53 24.00 [22.00, 30.00] 19.00 [16.00, 22.00] 15.00 [12.00, 18.00]  < 0.001

 8 Median creatinine (µmol/L) 9.09 70.00 [51.00, 104.5] 118.5 [75.75, 220.5] 191.0 [104.0, 256.0]  < 0.001

Comorbidity

 9 Nonpulmonary sepsis 3.05 51.0 (79.7%) 45.0 (52.3%) 14.0 (46.7%) 0.001

 10 Non-cardiogenic shock 4.89 14.0 (21.9%) 43.0 (50.0%) 19.0 (63.3%)  < 0.001

 11 Sepsis 4.24 46.0 (71.9%) 79.0 (91.9%) 29.0 (96.7%)  < 0.001

Biomarker

 12 Protein C (IU/ml) 14.23 87.56 [63.66, 120.8] 58.34 [42.29, 76.36] 45.88 [29.72, 59.02]  < 0.001

 13 IL-6 (pg/ml) 83.85 31.85 [12.98, 58.67] 215.9 [65.97, 541.76] 1662.95 [1464.12, 1703.72]  < 0.001

 14 IL-8 (pg/ml) 92.80 17.52 [11.78, 25.85] 89.53 [42.91, 245.76] 1309.68 [415.08, 1876.56]  < 0.001

 15 IL-10 (pg/ml) 74.51 1.87 [0.97, 2.60] 8.73 [5.73, 17.89] 95.00 [47.02, 237.14]  < 0.001

 16 TNF-α (pg/ml) 80.75 4.32 [3.01, 5.58] 9.34 [5.81, 17.86] 60.86 [37.06, 86.10]  < 0.001

 17 ANG-2 (ng/ml) 26.00 15599.28 [9121.07, 22569.53] 27227.89 [16780.04, 57219.49] 66847.94 [48797.5, 119579.71]  < 0.001

 18 RAGE (pg/ml) 12.80 602.97 [347.1, 1167.91] 1230.46 [585.74, 2943.99] 3391.97 [1323.99, 6817.59]  < 0.001

 19 vWF (IU/ml) 8.89 241,782.09 [83908.68, 
548,187.40]

663,133.03 [286863.6, 
1538970.55]

1457472.55 [838028.35, 
5753542.29]

 < 0.001

 20 TNF-R1 (ng/ml) 5.89 7304.35 [5534.83, 11,361.04] 19851.10 [12101.96, 28226.78] 31,518.88 [20929.46, 47527.00]  < 0.001

 21 ICAM-1 (ng/ml) 17.25 623603.80 [472636.42, 
834363.55]

816805.24[608061.95, 
1138757.95]

1588277.33 [924274.89, 
2198940.42]

 < 0.001

 22 PAI-1 (ng/ml) 56.91 45654.30 [28980.94, 76908.59] 144004.81 [84677.94, 
345661.74]

920145.05 [541715.8, 
1436526.94]

 < 0.001

 23 SPD (ng/ml) NA 5100.07 [2468.15, 8446.50] 2601.78 [1410.88, 6223.18] 2388.34 [1091.56, 3259.15] 0.001

Endpoint

Death at ICU Discharge 0 (0%) 25 (29.4%) 19 (63.3%)  < 0.001
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inflammation, found two phenotypes characterized by 
evidence of direct lung injury (consistent with more epi-
thelial lung injury and less severe endothelial lung injury), 
whereas indirect lung injury (consistent with more severe 
endothelial lung injury and less severe epithelial lung 
injury) suggestive of different molecular mechanisms 
of injury that may be used for potential future thera-
pies [2]. Other studies have also examined mechanisms 
of injury in the direct and indirect lung injury pheno-
types of ARDS using metabolomics and protein levels in 
serum [23]. In 2016, Famous et al. used patient informa-
tion from the FACTT Trial (fluid and catheter treatment 
trial, a fluid management trial) to confirm two ARDS 
subphenotypes using latent class analysis (hyper- and 
hypo-inflammatory) that showed a differential response 
to fluid management [13]. They identified three variables 
that accurately classified the subphenotypes (IL-8, bicar-
bonate, and sTNF-R1) in keeping with previous studies. 
In 2017, Bos et al. used a different approach to examine 
ARDS subphenotypes [17]. They questioned whether 

plasma biomarkers (markers of inflammation, coagula-
tion, and endothelial activation) alone could be used for 
subphenotype ARDS patients. They used cluster analysis 
and found two subphenotypes (uninflamed and reactive) 
based on four biomarkers (IL-6, interferon-gamma, angi-
opoietin 1/2, and PAI-1) with different mortality rates. 
They concluded that these two subpenotypes were simi-
lar to those previously identified as hyper-inflammatory 
and hypo-inflammatory.

To summarize and help apply the sub-phenotyping 
work, in 2020, Sinha et al. used patient information from 
5 clinical trials (ARMA, ALVEOLI, FACTT, START, and 
HARP-2) to develop and validate a parsimonious classi-
fication model to accurately subphenotype ARDS meant 
to be used in the clinical setting [18]. They found a model 
having 3 or 4 variables (IL-8, bicarbonate, protein C, and 
vasopressor use) that could accurately identify the previ-
ously found two subphenotypes of ARDS (hyper-inflam-
matory and hypo-inflammatory). They propose that these 
markers could be used in ARDS clinical trials.

Fig. 1 Differences in a standardized score of each continuous variable and proportion of each binary variable by subtype. In terms of mortality, 
subtypes are referred to as mild, moderate, and severe. Variables are sorted in ascending order in the mild group. Note that IL interleukin, TNF-α 
tumor necrosis factor α, ANG-2 Angiopoietin 2, RAGE receptor of advanced glycation end products, vWF von Willelbrand factor, TNF-R1 tumor 
necrosis factor receptor 1, ICAM-1 intercellular adhesion molecule-1, PAI-1 plasminogen activator inhibitor-1, SPD surfactant protein D and Prot C 
Protein C
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We compared our results to previously published 
models by cross-classifying our clustering results to the 
hyper- and hypo-inflammatory subphenotypes suggested 
by Sinha et  al. (2020) [18] (Table  S2). As presented in 
the result section, we observed 98–100% exact matches 
between Group 1 (mild) and the hypo-inflammatory sub-
type and 100% between Group 3 (severe) and the hyper-
inflammatory subtype. For both models, 86 patients of 
Group 2 (moderate) are spread almost equaly between 
the hyper- and hypo-inflammatory subgroups. As a result 
of this comparison, we believe that our model, using 
more pathophysiologic biomarkers, allows more accurate 
grouping of patients supported by differential predic-
tion of mortality between our two hyper-inflammatory 
groups. Moreover, if we apply the models of Sinha et al. 
(2020) [18] we have good accuracy and Kappa-agree-
ment suggesting that our population are comparable 
(Table S2).

It is important to note that none of these investigators 
have said that only two subphenotypes exist, but their 
data model best fits two subphenotypes. Our data sug-
gest a unique hyper-inflammatory subgroup may have 

a differential mortality risk. Although many prior stud-
ies of ARDS phenotyping have suggested only 2 clusters, 
other authors have also suggested that more than two 
phenotypes may exist [17].

Our study has numerous unique characteristics, 
strengths, and limitations. Our cohort of patients is 
unique to one region in Canada and may represent a 
more homogeneous cohort of patients within a complex 
heterogeneous disease than those previously described. 
For example, in the Calgary region, there are fewer 
African Americans and Hispanic heritage people, and 
there are more people of Asian heritage and Indigenous 
individuals than seen in most U.S. centers. Of note, 
we did not get information on heritage in our study. 
In addition, although our patients arise from 2 physi-
cally distinct ICUs, the ICUs are from the same clinical 
department within which there is standardized training 
of respiratory therapists and ICU nurses, standardized 
equipment (e.g., monitors, ventilators, pulse oximeters, 
arterial blood gas analyzers, and intravenous pumps), a 
singular medication library, and medical staff, includ-
ing critical care fellows, that rotate between units. 

Fig. 2 Kaplan–Meier estimate of 30-day patient survival with log-rank test p-value by subgroup
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Therefore, it is likely that care is comparable and homo-
geneous between ICUs. However, differences in race 
and ancestral origin may limit external generalizability. 
Race is not routinely collected by our electronic health 
medical record.

One strength of our study is that the cohort is an obser-
vational cohort rather than a highly selected patient sam-
ple, such as the prior studies that used patients enrolled 
in randomized controlled clinical trials, suggesting that 
these patients were highly selected relative to a popula-
tion of interest. This can have introduced a selection bias 
in the population analyzed, as we all know that not all 
comers are eligible for those studies. As such, our cohort 
may more reasonably represent the ’usual’ population 
of patients with ARDS, at least in Canada. Of note, our 
patients excluded those with COVID-19, which some 
have suggested have a unique or different endotype to 
other causes of ARDS.

Other strengths of our study include a standardized 
collection of clinical, laboratory, and biomarker data at 
admission. However, the levels of several biomarkers in 

our studies differed from those obtained in comparable 
studies. Notably, other more recent comparative work 
done with ARDS caused by COVID-19 has similar num-
bers [24].

Again, patients in other studies were enrolled in 
randomized controlled studies. This could result in 
a difference in the populations in those studies. Also, 
although blood samples were collected within a stand-
ardized protocol, including comparable times from ICU 
admission, samples were stored and batched until they 
were analyzed. Despite rigorous standardized operating 
procedures for processing and −  80℃ storage (includ-
ing alarmed freezers) until analyzed, it is possible that 
biological material degradation occurred over time; 
this may have differentially affected our analyses. How-
ever, because of the uniformity of our standard operat-
ing procedures and sample management, it is less likely 
that there was sample degradation than that seen in all 
the randomized trials from many centers in the U.S. 
Those different results can also be attributed to techni-
cal differences, including the measurement and analysis 

Fig. 3 Side-by-side boxplot of cytokine concentration in logarithm scale by subgroup. Note that IL interleukin, TNF-α tumour necrosis factor α, 
ANG-2 Angiopoietin 2, RAGE receptor of advanced glycation end products, vWF von Willelbrand factor, TNF-R1 tumour necrosis factor receptor 1, 
ICAM-1 intercellular adhesion molecule-1, PAI-1 plasminogen activator inhibitor-1, SPD surfactant protein D and Prot C Protein C
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methods—the kits used—for the biomarkers. In addi-
tion, most other studies collected blood for biomark-
ers at variable time points rather than standardized at 
admission, like in our study. In addition, other studies 
measured biomarkers at different times, either dur-
ing the primary analysis of the initial study or during 
their analysis a few years later. Finally, it is important 
to notice a great difference in the biomarkers intro-
duced in the models presented in the different studies. 
Most prior studies introduced more biomarkers in their 
models compared to our work, but the justifications for 
each biomarker selection in their model were not pro-
vided. Our study carefully chose the biomarkers in the 
clustering model; the biomarkers are also close to that 
of the most recent work published published [10, 11], 
and we used robust analytical techniques. Our find-
ings also duplicate other recently published findings as 
described above [13, 15, 17, 25].

Our biomarkers did not include other potential 
markers, such as those from genomics or metabo-
lomics: numerous studies have suggested that patients 
with ARDS may have unique genomic or metabolomic 
profiles [23], but one of our aims was to develop a 
method that could be relatively easily utilized in the 
ICUs in North America.

Our study used an advanced LCM technique com-
pared to those working with a conventional LCM 
technique. Despite the efforts to include mixed-type 
data, small samples in high dimensions, and variable 
selection (which a conventional LCM cannot do), our 
study still has two analytical concerns about depend-
ency between features. The first concern is that fea-
ture redundancy and dependency between feature 
groups still remain. For example, consider two groups 
of cytokine measures. IL-6, IL-8, IL-10, and TNFa are 
the markers of an inflammatory group, and ICAM-
1, ANG-2, and vWF are endothelium group markers. 
One measure per group may be much more efficient 
when utilizing the model as a bedside formula. In addi-
tion, the model does not fully describe the association 
between markers within or between groups. The sec-
ond concern is that equal weight is given to all variables 
included in a model. This assumption ignores patho-
biological pathways, that is, pathways with individual 
effects on biomarkers (and vice versa), and the inter-
dependent effects between biomarkers. Although our 
study demonstrates important cytokines or lab results 
that contribute to identifying phenotypes, it is impossi-
ble to attribute a weight of effect to each input feature.

Conclusion
This study again highlights that patients with ARDS 
admitted to the ICU have heterogeneous characteris-
tics and outcomes. Furthermore, simple characteriza-
tion based on the P/F ratio alone may not be sufficient 
to estimate the risk of adverse outcomes such as mor-
tality. Phenotyping studies have now been undertaken 
for several years. All the results of those studies are 
expected to be hypothesis-generating studies. In addi-
tion to other phenotyping studies, the present study 
also emphasizes the importance of undertaking new 
prospective studies with real-time measurements of 
biomarkers. Our study adds to the large body of evi-
dence supporting that identifying unique endotypes 
using rapid diagnostics measures including a limited 
biomarker profiles combined with clinical variables 
to impact clinical trial design or prognosticate patient 
outcomes, remains an unrealized opportunity rather 
than an intervention that can be implemented in real-
time. Our study revealing three endotypes in ARDS is 
one of many studies that may advance the detection of 
ARDS endotypes in developing therapies or interven-
tions in the future.
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