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Abstract 

Background Malignant esophageal fistula (MEF), which occurs in 5% to 15% of esophageal cancer (EC) patients, 
has a poor prognosis. Accurate identification of esophageal cancer patients at high risk of MEF is challenging. The goal 
of this study was to build and validate a model to predict the occurrence of esophageal fistula in EC patients.

Methods This study retrospectively enrolled 122 esophageal cancer patients treated by chemotherapy or chemora-
diotherapy (53 with fistula, 69 without), and all patients were randomly assigned to a training (n = 86) and a validation 
(n = 36) cohort. Radiomic features were extracted from pre-treatment CTs, clinically predictors were identified by logis-
tic regression analysis. Lasso regression model was used for feature selection, and radiomics signature building. 
Multivariable logistic regression analysis was used to develop the clinical nomogram, radiomics-clinical nomogram 
and radiomics prediction model. The models were validated and compared by discrimination, calibration, reclassifica-
tion, and clinical benefit.

Results The radiomic signature consisting of ten selected features, was significantly associated with esophageal fis-
tula (P = 0.001). Radiomics-clinical nomogram was created by two predictors including radiomics signature and steno-
sis, which was identified by logistic regression analysis. The model showed good discrimination with an AUC = 0.782 
(95% CI 0.684–0.8796) in the training set and 0.867 (95% CI 0.7461–0.987) in the validation set, with an AIC = 101.1, 
and good calibration. When compared to the clinical prediction model, the radiomics-clinical nomogram improved 
NRI by 0.236 (95% CI 0.153, 0.614) and IDI by 0.125 (95% CI 0.040, 0.210), P = 0.004.

Conclusion We developed and validated the first radiomics-clinical nomogram for malignant esophageal fistula, 
which could assist clinicians in identifying patients at high risk of MEF.

Introduction
Malignant esophageal fistula (MEF) is a serious compli-
cation of advanced esophageal cancer and is defined as 
a fistula caused by malignancies [1]. The two most com-
mon types are esophageal mediastinal fistula and esoph-
ageal respiratory fistula. Esophageal aortic fistula was 
rarely reported, because these patients often die of sud-
den massive hemorrhage and cannot be diagnosed before 
death [2]. In untreated EC patients, the incidence of 
esophageal fistula ranges from 5 to 15% [3], while radio-
therapy patients have a range of 5.6% to 33% [4–7]. MEF 
has a very poor prognosis; patients frequently die within 
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3  months due to nutritional failure, pneumonia, medi-
astinal abscess or large vascular injury [8]. Patients with 
MEF must be treated with a nutrition tube, gastrostomy, 
or esophageal stent to prevent digestive fluid leakage into 
the trachea or mediastinum, all of which significantly 
reduce quality of life. Therefore, early identification of 
patients at risk of MEF enables early intervention, which 
improves patient outcomes.

However, few studies on MEF risk factors have been 
conducted, the majority of which were retrospective 
analyses of small samples, and only a few risk factors had 
been confirmed.  T4 stage (invasion of adjacent organs) 
had been a known risk factor for MEF. Because the 
esophagus is a thin-walled organ with a thickness of less 
than 5  mm, tumors can grow through the entire thick-
ness of the esophageal wall, which is the primary cause 
of MEF [3]. It is reported that the incidence of esophageal 
fistula is 10–22% in  T4 patients with radical concurrent 
chemoradiotherapy, which is significantly higher than in 
non-T4 patients [9, 10]. In a retrospective study, ECOG 
PS, BMI,  T4,  N2/3 and re-radiotherapy were identified 
as independent factors, with a C-index of a nomogram 
incorporating the factors of 0.764 in an external valida-
tion cohort [11]. Another retrospective study revealed 
quantitative pretreatment CT analysis has excellent per-
formance for predicting fistula formation in esophageal 
cancer patients [12].

Recently, radiomics has proven to be a useful tool for 
identifying the biological behavior of tumors [13]. Its 
central concept is to convert images into digital informa-
tion that can be mined, extracted, and analyzed, as well 
as to predict target associations and build model [14, 15]. 
Iwashita et  al. reported CT radiomics and clinical data 
might help determine survival outcomes in patients with 
esophageal cancer treated with radical radiotherapy [16]. 
Yang et al. found that radiomics can be used for chemo-
radiation outcome prediction in esophageal cancer [17]. 
Furthermore, some research has demonstrated that radi-
omics of tumor target areas can be utilized to predict 
tumor stage, differentiation, and pathological type [18, 
19]. The present study attempt to develop a joint predic-
tion nomogram by combining clinical factors and pre-
treatment CT radiomics to accurately predict MEF. It will 
help clinicians identify EC patients at high risk of having 
an esophageal fistula.

Materials and methods
Patients
The Shandong Cancer Hospital ethics commit-
tee approved this retrospective study (Approval No. 
2021003193), and informed consent was waived.

Inclusion criteria were: (a) Esophageal carci-
noma proved by pathology; (b) Chest enhanced CT 

examination before treatment; (c) Patients treated with 
chemotherapy or chemoradiotherapy. Exclusion crite-
ria: (a) Esophageal fistula appeared prior to treatment; 
(b) Anastomotic fistula or other medical injuries caused 
esophageal fistula.

A total of 122 patients treated at Shandong Cancer 
Hospital from October 2018 to September 2020 were 
included in the study. Fifty-three patients with MEF were 
identified, while 69 patients did not have a MEF within 
their survival period.

Malignant esophageal fistula must be confirmed by 
endoscopy or esophagography. All cases were divided 
into a training set and a validation set in a 7:3 ratio using 
a random algorithm.

Data collection and variable definition
Clinical data such as gender, age, tumor location, TNM 
stage, radiotherapy, chemoradiotherapy, chemotherapy 
regimen, and stenosis were obtained using the hospital 
information system (HIS). To obtain enhanced chest CT 
images, the picture archiving and communication system 
(PACS) was used. The image format was digital imaging 
and communications in medicine (DICOM).

Stenosis was defined as the inability to pass an endo-
scope through and/or significantly impairing eating 
(semi-fluid or fluid diet). The chemotherapy regimens 
mentioned in the article were first-line treatments.

Clinical predictors and clinical nomogram
Logistic univariate and multivariate regression analyses 
were used to identify clinical independent predictors 
and create a clinical nomogram using the variables with 
P < 0.25 in multivariate analyses.

Tumor segmentation
The region of interest (ROI) was defined as primary 
tumors, which included lesions with esophageal wall 
thickening > 5 mm or lumen occlusion diameter > 10 mm 
but did not include intraluminal gas or oral contrast 
agent. A radiation oncologist with 10 years of experience 
manually delineated the ROIs, which were then checked 
by a radiologist. Both doctors were unaware of the 
patient’s clinical information. 3D Slicer (version: 4.10.2), 
an open source software platform for medical image pro-
cessing and visualization, was used to perform all deline-
ation tasks.

Feature extraction and selection
Radiomic features were extracted automatically from 
each contoured ROI using Pyradiosity, an open source 
Python package available at https:// pyrad iomics. readt 
hedocs. io/ en/ latest/.

https://pyradiomics.readthedocs.io/en/latest/
https://pyradiomics.readthedocs.io/en/latest/
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The Lasso-logistic regression algorithm was used to 
screen radiomic features related to the presence of MEF. 
The Pearson correlation test was used to examine the 
multicollinearity.

Radiomics model construction
Based on the screened features, the logistic regression 
algorithm generated the radiomics model.

Radiomics‑clinical model construction
Two steps were included in radiomics-clinical model 
construction. First, radiomic signature (radscore) was 
calculated by adding all filtered eigenvalues multiplied 
by the corresponding coefficients. The Wilcoxon rank 
sum (Mann–Whitney) test was applied to the radscores 
of the training and validation sets to ensure that there 
was no difference between the two groups. The flowchart 
for radiomic signature is presented in Fig. 1. Second, the 
logistic regression algorithm was used to fit radiomic sig-
nature and clinical independent risk factors.

Validation and comparison
In the validation set, the prediction efficiency of each 
model was evaluated, including discrimination (AUC/

ROC), calibration (calibration curve), goodness of fit 
(AIC), reclassification ability (NRI, IDI), and clinical 
benefit (DCA curve). The Delong test was used to com-
pare model discrimination abilities.

Statistical analysis
Stata 15.0 software (Stata Corp, www. stata. com) was 
used for statistical analysis. The chi-square test was 
used to compare categorical variables; the Wilcoxon 
rank sum test was used to compare continuous vari-
ables; all tests were two-sided, and P < 0.05 was consid-
ered statistically significant. R software (version 3.5.3, 
https:// www.r- proje ct. org/) was used to select radiomic 
features and build models. The R program packages 
used in this study are listed in the table below.

Algorithm Packages Version

Lasso glmnet 4.0-1

Logistic, nomogram, calibration Rms 6.0-1

ROC/AUC ROCR, pROC 1.0-11, 1.16.2

NRI/IDI PredictABEL, nricens 1.2-4, 1.6

Correlation test corrplot 0.84

DCA Rmda 1.6

Fig. 1 Flowchart of developing a radiomic signature. Following ROI segmentation, 851 radiomic features were extracted from each ROI. The Lasso 
algorithm selected ten features that had the best correlation with the occurrence of esophageal fistula and a radiomic signature were created. The 
box chart revealed that there was no significant difference between the training and validation sets, but there was a difference between patients 
with and without fistula

http://www.stata.com
https://www.r-project.org/
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Results
Patients
This study enrolled 122 patients with esophageal can-
cer, including 56 patients with MEF. Squamous cell car-
cinoma was the pathological type of all patients. The 
time between the occurrence of an esophageal fistula 
and diagnosis of EC ranged from 1 to 24  months, with 
an average of 7.87 ± 8.78 months. Esophageal mediastinal 
fistula occurred in 22 patients, esophageal tracheal fis-
tula in 30 patients, and esophageal pulmonary fistula in 
1 patient. Sixty-nine control cases were hospitalized at 
the same time and had no esophageal fistula within the 
survival period or 2 years after diagnosis, with a median 
follow-up time of 30 months (IQR: 16, 38). Table1 shows 
the baseline characteristics of enrolled patients.

In a 7:3 split, all patients were assigned to a training set 
and a validation set. There were 86 patients in the train-
ing set, with 38 (44.2%) having MEF; 36 patients in the 
validation set, with 15 (41.7%) having MEF. No statisti-
cally significant differences existed in baseline clinical 
characteristics between the two groups (Table 1).

Clinical predictors and clinical nomogram
The clinical prediction model was built using stenosis 
(P = 0.01), gender (P = 0.23), and T stage (P = 0.11), all 
of which were screened by logistic regression algorithm 
(Table  2). The model predicted esophageal fistula with 
an AUC = 0.691 (95% CI 0.582–0.799) in the training set, 
and 0.640 (95% CI 0.453–0.827) in the validation set. The 
AIC value was 115.8. Figure  2 depicts a clinical nomo-
gram and its calibration curve. Each predictor in the 
nomogram was assigned a score on a point scale. By add-
ing up the total scores projected in the bottom scale, we 
could estimate the probability of MEF.

Radiomic features
A total of 851 radiomic features were extracted from 
each ROI, and all features can be divided into 4 catego-
ries. The ‘shape’ category had 14 features that indicate the 
shape and size of regions of interest (ROIs) in 2D and 3D 
spaces. The ‘first order’ represents statistical eigenvalues 
of voxel intensity, encompassing mean, maximum, and 
minimum values. Textural features such as Glcm (Gray-
LevelCooccurenceMatrix), Glrlm (GrayLevelRunLength-
Matrix), Glszm (GrayLevelSizeZoneMatrix), Gldm 
(GrayLevelDependenceMatrix), and Ngtdm (Neighbour-
ingGrayToneDifferenceMatrix) were computed from 
multiple statistical matrices and characterized the organ-
ization Wavelet-based features were defined as first-order 
and texture features obtained from eight wavelet decom-
positions of the original CT images. As a result, the total 
number of radiomic features can be estimated as 14 + (1
8 + 24 + 16 + 16 + 14 + 5) + (18 + 24 + 16 + 16 + 14 + 5)8 = 8
51.

Ten features that were closely related to the presence 
of an MEF were chosen using Lasso-logistic algorithm 
(Fig.  1). The selected features and their coefficients are 
shown in Table  3. There was no significant multicollin-
earity between the features chosen (Pearson correlation 
coefficients were all less than 0.9).

Radiomics prediction model
The radiomics prediction model was built based on the 
selected radiomic features to compare with the clinical 
and radiomics-clinical models. In validation set, the AUC 
of radiomics model was 0.692 (95% CI 0.516–0.868) and 
AIC was 111.4.

Radiomics‑clinical nomogram model
The formula for calculating radiomic signature (radscore) 
was as follows:

Radscore = original_gldm_DependenceEntropy× 0.29509193

+ wavelet.LLH_firstorder_Mean×−0.87347923

+ wavelet.LLH_firstorder_Skewness×−0.01889205

+ wavelet.LHH_firstorder_Skewness× 0.32706898

+ wavelet.LHH_glcm_Idn× 0.72705274

+ wavelet.HLL_firstorder_Skewnes× 1.02717885

+ wavelet.LLL_firstorder_Maximum× 0.74987525

+ wavelet.LLL_firstorder_Range× 0.17126651

+ wavelet.LLL_glszm_GrayLevelNonUniformityNormalized×−0.26262914

+ wavelet.LLL_glszm_ZoneEntropy× 0.30172464.
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Table 1 Clinical characteristics of patients included in the analysis

a The first-line chemotherapy regimen
b Paclitexal-based chemotherapy regimen
c Fluorouracil-based chemotherapy regimen

Characteristics Primary set Validation set χ2/Z P

Non‑fistula Fistula Non‑fistula Fistula

Subjects 48 38 21 15

Age (mean ± SD) 63.813 ± 10.097 62.026 ± 9.545 64.0476 ± 6.888 60 ± 7.339 0.478 0.633

Length (mean ± SD) 6.315 ± 2.239 6.297 ± 2.278 5.924 ± 2.497 6.8 ± 2.908 0.328 0.743

Gender

 Female 8 (16.67%) 3 (7.89%) 3 (14.29%) 2 (13.33%)

 Male 40 (83.33%) 35 (92.11%) 19 (90.48%) 13 (86.67%) 0.012 0.913

Stage_T

  T2 1 (2.08%) 2 (5.26%) 2 (9.52%) 0 (0.00%)

  T3 30 (62.50%) 16 (42.11%) 15 (71.43%) 7 (46.67%)

  T4 17 (35.42%) 20 (52.63%) 4 (19.05%) 8 (53.33%) 1.122 0.571

Stage_N

  N0 6 (12.50%) 3 (7.89%) 2 (9.52%) 3 (20.00%)

  N1 19 (39.58%) 16 (42.11%) 9 (42.86%) 6 (40.00%)

  N2 16 (33.33%) 15 (39.47%) 7 (33.33%) 4 (26.67%)

  N3 7 (14.58%) 4 (10.53%) 3 (14.29%) 2 (13.33%) 0.511 0.917

Stage_M

  M1 15 (31.25%) 12 (31.58%) 10 (47.62%) 8 (53.33%)

  M0 33 (68.75%) 26 (68.42%) 11 (52.38%) 7 (46.67%) 3.773 0.052

Location

 Upper 10 (20.83%) 10 (26.32%) 6 (28.57%) 4 (26.67%)

 Middle 17 (35.42%) 15 (39.47%) 10 (47.62%) 6 (40.00%)

 Lower 21 (43.75%) 13 (34.21%) 5 (23.81%) 5 (33.33%) 1.521 0.467

Radiation

 Y 34 (70.83%) 26 (68.42%) 11 (52.38%) 9 (60.00%)

 N 14 (29.17%) 12 (31.58%) 10 (47.62%) 6 (40.00%) 2.271 0.132

Fraction dose

 < 2 GY 14 (29.17%) 13 (34.21%) 5 (23.81%) 3 (20.00%)

 ≥ 2 GY 20 (41.67%) 13 (34.21%) 6 (28.57%) 6 (40.00%) 1.671 0.196

Total dose

 < 60 GY 14 (29.17%) 20 (52.63%) 5 (23.81%) 5 (33.33%)

 ≥ 60 GY 20 (41.67%) 6 (15.79%) 6 (28.57%) 4 (26.67%) 0.269 0.604

Chemoradiotherapy

 Y 13 (27.08%) 12 (31.58%) 5 (23.81%) 4 (26.67%)

 N 23 (47.92%) 12 (31.58%) 6 (28.57%) 5 (33.33%) 0.068 0.794

Stenosis

 Y 11 (22.92%) 19 (50.00%) 3 (14.29%) 4 (26.67%)

 N 37 (77.08%) 19 (50.00%) 18 (85.71%) 11 (73.33%) 2.863 0.09

Chemotherapy

 Y 45 (93.75%) 34 (89.47%) 21 (100.00%) 14 (93.33%)

 N 3 (6.25%) 4 (10.53%) 0 (0.00%) 1 (6.67%) 1.191 0.275

Chemotherapy  regimena

  Tb 35 (72.92%) 29 (76.32%) 15 (71.43%) 12 (80.00%)

  Fc 10 (20.83%) 5 (13.16%) 6 (28.57%) 2 (13.33%) 0.266 0.635
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In the training set, patients without MEF had a rad-
score of 0.873 ± 0.372, while patients with MEF had a rad-
score of 1.275 ± 0.381. Wilcoxon rank sum test revealed 
a significant difference (P = 0.000). In the validation set, 
patients with MEF had a radscore of 1.125 ± 0.186, while 
those without had a radscore of 0.857 ± 0.2187, a signifi-
cant difference (P = 0.000). In the training and validation 

sets, there was no significant difference between patients 
with MEF (P = 0.278), and those without (P = 0.6019). The 
multivariate logistic regression analysis including rad-
score, gender, T stage and stenosis revealed that stenosis 
(P = 0.023) and radscore (P = 0.001) were the independent 
risk factors (Table 2).

A radiomics-clinical nomogram prediction model 
(Fig.  3A) was developed using these two variables as 
inputs, which predicted esophageal fistula with an 
AUC = 0.782 (95% CI 0.684–0.8796) in the training set 
and 0.867 (95% CI 0.7461–0.987) in the validation set, 
with an AIC = 101.1. The calibration curve revealed that 
the radiomics-clinical nomogram’s predicted results were 
in good agreement with the actual observations (Fig. 3B).

Model comparison
Figure  4A displays the discrimination ability (AUC val-
ues) of the clinical model, radiomics model, and radi-
omics-clinical model, revealing that the Joint model 
outperformed the other two models (Delong test, 
P < 0.05). The net benefit of the radiomics-clinical predic-
tion model under each threshold probability was greater 
than that of the clinical model and radiomics model, 
according to the decision curves (Fig. 4B). In comparison 
to the clinical model, the NRI of radiomics-clinical model 
was 23.6% (95% CI 0.153–0.614) (1000 iterations), and 
IDI was 0.125 (95% CI 0.040–0.210), which was statisti-
cally significant (P = 0.004).

Discussion
Malignant esophageal fistula is a serious complication of 
esophageal cancer that significantly reduces the patient’s 
survival time and quality of life. However, there is cur-
rently a scarcity of effective predictive methods. Clinical 
prediction models and quantitative-CT-based predic-
tion models with AUC of 0.805 and 0.841, respectively, 
have been reported in previous research [11, 12]. In pre-
sent study, we built the radiomics-clinical model, clini-
cal model, and radiomics model all at the same time and 
compared their predictive abilities. We discovered that 
the radiomics-clinical model performed significantly bet-
ter than the other two models.

The radiomics-clinical model developed by fitting ste-
nosis with radiomic signature using logistic regression 
algorithm had an excellent prediction efficiency with an 
AUC of 0.867 (95% CI 0.7461–0.987). The discrimination 
ability was significantly higher than that of the clinical 
(AUC = 0.640) and radiomics models (AUC = 0.692). In 
terms of goodness of fit, the AIC of the radiomics-clinical 
model was 101.1, which was lower than the AICs of the 
clinical model (AIC = 115.8) and the radiomics model 
(AIC = 111.4), indicating a better fitting performance.

Table 2 Univariate regression analysis and multivariate 
regression analysis

OR odds ratio, CI confidence interval
a The first-line chemotherapy regimen
b Paclitexal-based chemotherapy regimen
c Fluorouracil-based chemotherapy regimen

Characteristics Univariate analysis Multivariate regression

OR (95% CI) P OR (95% CI) P

Age 0.981 (0.938, 1.025) 0.402

Length 0.997 (0.821, 1.207) 0.972

Gender

 Female

 Male 2.333 (0.621, 11.280) 0.236 2.698 (5.126, 18.488) 0.267

Stage_T

  T2/T3

  T4 2.796 (0.855,4.897) 0.111 1.429 (5.177, 3.931) 0.486

Stage_N

  N0/N1

  N2/N3 1.087 (0.463, 2.558) 0.848

Stage_M

  M0

  M1 1.015 (0.401,2.540) 0.974

Location

 Upper

 Middle 0.882 (0.285, 2.717) 0.826

Lower 0.619 (0.200, 1.893) 0.400

Radiotherapy

 No

 Yes 0.892 (0.3530, 2.271) 0.809

Chemoradiotherapy

 No

 Yes 1.385 (0.490, 3.942) 0.538

Chemotherapy  regimena

  Tb

  Fc 0.603 (0.172, 1.902) 0.402

Fraction

 < 2 GY

 ≥ 2 GY 0.700 (0.247, 1.958) 0.497

Stenosis

 No

 Yes 3.364 (1.355, 8.725) 0.010 3.257 (1.197, 9.374) 0.023

Radscore

Mean ± SD 2.772 (1.652, 5.144) 0.000 2.709 (1.573, 5.147) 0.001
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T4 indicates that esophageal cancer has infiltrated the 
entire esophageal layer and has invaded surrounding 
organs [20]. Esophageal cancer is prone to spontaneous 

necrosis, and radiotherapy or chemotherapy can also 
promote necrosis, resulting in an esophageal fistula, par-
ticularly in tumors sensitive to radiation or chemother-
apy [21]. However, whether radiotherapy is the cause of 
esophageal fistula remains debatable. Some researchers 
believe there is no evidence that radiotherapy increases 
the incidence of esophageal fistula because these patients 
with tracheoesophageal fistula after radiotherapy may 
have fistula in any case, but radiotherapy causes it to 
occur earlier [3]. Other researchers believe that radio-
therapy causes tumor tissue to shrink while inhibiting 
normal tissue repair, which is a major cause of MEF [22, 
23].

Esophageal stenosis is another clinically independent 
predictor. Takahiro et al. [9] discovered that stenosis was 
the only clinical risk factor for MEF, and that the risk of 
esophageal fistula in patients with stenosis was twice that 
of patients without stenosis, which was consistent with 
our findings.  T4 and stenosis were also independent risk 

Fig. 2 A Nomogram developed by clinical risk factors. B Calibration curve plotted for clinical prediction model

Table 3 Radiomic features selected and their coefficients

Radiomic features Coefficient

“original_gldm_DependenceEntropy” 0.295

“wavelet.LLH_firstorder_Mean” − 0.873

“wavelet.LLH_firstorder_Skewness” − 0.019

“wavelet.LHH_firstorder_Skewness” 0.327

“wavelet.LHH_glcm_Idn” 0.727

“wavelet.HLL_firstorder_Skewness” 1.027

“wavelet.LLL_firstorder_Maximum” 0.750

“wavelet.LLL_firstorder_Range” 0.171

“wavelet.LLL_glszm_GrayLevelNonUniformityNormalized” − 0.263

“wavelet.LLL_glszm_ZoneEntropy” 0.302

Fig. 3 A Radiomics-clinical nomogram. B Calibration curve plotted for radiomics-clinical prediction model
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factors for esophageal fistula in patients treated by con-
current radiotherapy and chemotherapy [24]. However, 
there is no universally accepted definition of esopha-
geal stenosis, which is usually determined based on the 
patient’s clinical symptoms and/or the findings of an 
endoscopic examination [25, 26].

In this study, male patients outnumbered female 
patients by 6.625:1, and female patients were less likely 
than male patients to develop an esophageal fistula. 
Guan et  al. discovered that gender was an independent 
risk factor for malignant esophageal fistula [27]. Previous 
research has found that gender influenced the prognosis 
of esophageal cancer [28]. Estrogen regulates metabolism 
and organ response after injury [29]. As a result, women 
have natural advantages in injury recovery, which may 
account for gender differences in the occurrence and 
prognosis of MEF.

The clinical prediction model’s discrimination was 
unsatisfactory. To improve model performance, we 
extracted radiomic features from the primary tumor’s 
pre-treatment CT, screened out the feature set most rele-
vant to the occurrence of MEF using lasso logistic regres-
sion and cross validation, and built a combined model 
with clinical risk factors, which significantly improved 
prediction efficiency. The biological behavior of esopha-
geal cancer cells is a significant cause of fistula [30], but 
clinical risk factors cannot adequately reflect these char-
acteristics. Medical images of tumors are the external 
manifestation of gene phenotype, and radiomics can con-
vert images into digital data that can be mined, extracted, 
and analyzed [31]. Radiomics had been used in tumor 

studies to predict pathological type, stage, curative effect, 
and prognosis [32–34], and the derived radiogenomics 
can analyze tumor heterogeneity at the gene level [35, 
36]. In our study, the potential 851 candidate radiomics 
features were eventually reduced to ten potential pre-
dictors by the LASSO method for further integration to 
form the radiomics signature, which contains useful bio-
logical information.

Because previous research has shown that arterial 
phase can better visualize esophageal tumors, which were 
chosen as the research object in this study [37].

This research had some advantages: first, prior to 
treatment, all of the clinical characteristics and medical 
images were gathered, which was helpful in developing 
the treatment strategy. Second, the nomogram predic-
tion model showed the weight of each parameter on the 
outcome in a more intuitive way, making it more practi-
cal for clinical use. There were some limitations: because 
none of the patients in this group were surgically treated, 
only a few patients provided data on tumor differentia-
tion, and this variable could not be assessed. To avoid 
bias, the total dose of radiotherapy was not included in 
the analysis. This was due to the fact that eight patients 
developed esophageal fistulas during radiotherapy, and 
their irradiation dose was 2–40  Gy. Furthermore, the 
modeling and validation were all completed in a single 
center. In future work, we will include data from multi-
ple centers for external validation to improve the model’s 
generalization.

Fig. 4 The model’s performance was compared using the A ROC curve (discrimination), B DCA curve (clinical benefit). Radiomics-clinical prediction 
model outperformed the other two
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Conclusion
We developed and validated the first radiomics-clinical 
nomogram which could assist clinicians in identifying 
patients at high risk of malignant esophageal fistula.
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