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Abstract 

Background  Acute kidney injury (AKI) is one of the preventable complications of percutaneous coronary interven-
tion (PCI). This study aimed to develop machine learning (ML) models to predict AKI after PCI in patients with acute 
coronary syndrome (ACS).

Methods  This study was conducted at Tehran Heart Center from 2015 to 2020. Several variables were used to design 
five ML models: Naïve Bayes (NB), Logistic Regression (LR), CatBoost (CB), Multi-layer Perception (MLP), and Ran-
dom Forest (RF). Feature importance was evaluated with the RF model, CB model, and LR coefficients while SHAP 
beeswarm plots based on the CB model were also used for deriving the importance of variables in the population 
using pre-procedural variables and all variables. Sensitivity, specificity, and the area under the receiver operating char-
acteristics curve (ROC-AUC) were used as the evaluation measures.

Results  A total of 4592 patients were included, and 646 (14.1%) experienced AKI. The train data consisted of 3672 
and the test data included 920 cases. The patient population had a mean age of 65.6 ± 11.2 years and 73.1% male pre-
dominance. Notably, left ventricular ejection fraction (LVEF) and fasting plasma glucose (FPG) had the highest feature 
importance when training the RF model on only pre-procedural features. SHAP plots for all features demonstrated 
LVEF and age as the top features. With pre-procedural variables only, CB had the highest AUC for the prediction of AKI 
(AUC 0.755, 95% CI 0.713 to 0.797), while RF had the highest sensitivity (75.9%) and MLP had the highest specificity 
(64.35%). However, when considering pre-procedural, procedural, and post-procedural features, RF outperformed 
other models (AUC: 0.775). In this analysis, CB achieved the highest sensitivity (82.95%) and NB had the highest speci-
ficity (82.93%).
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Conclusion  Our analyses showed that ML models can predict AKI with acceptable performance. This has potential 
clinical utility for assessing the individualized risk of AKI in ACS patients undergoing PCI. Additionally, the identified 
features in the models may aid in mitigating these risk factors.

Keywords  Acute coronary syndrome, Percutaneous coronary intervention, Acute kidney injury, Machine learning, 
Prediction

Graphical Abstract

Introduction
Coronary artery disease, particularly acute coronary syn-
drome (ACS), is responsible for approximately one-third 
of all deaths in adults over 35. Nowadays percutaneous 
coronary intervention (PCI) is the most widely used 
treatment for ACS. Acute kidney injury (AKI) is a serious 
non-cardiovascular complication in patients with ACS, 
and nearly 12.8% of the patients develop AKI as a major 
post-PCI complication with a 20.2% attributed mortality 
rate during or after hospitalization [1, 2]. A growing body 
of evidence indicates that AKI is significantly associated 
with an increased risk of long-term morbidities such as 
repeated coronary revascularization, myocardial infarc-
tion, and stroke [3, 4].

To prevent contrast induced-AKI (CI-AKI), physicians 
can implement preventive measures such as regulating 
contrast volume and osmolarity, pre-procedural statin 
intake, and pre- and post-procedural hydration [1, 5]. 
Identifying PCI-related patient risks allows physicians 

to tailor strategies based on each individual’s risk pro-
file, leading to fewer complications and improved clinical 
outcomes after a PCI procedure [1, 6]. Prediction models, 
such as the NCDR-AKI risk model, have been developed 
to assess the risk of CI-AKI prior to performing PCI with 
a c-statistics of 0.71 [7]. Traditional statistical models 
may not include all possible interactions when there are 
numerous candidate variables, resulting in a decrease in 
the model’s accuracy when these interactions are ignored 
[1, 8]. Machine Learning (ML)-based models do not 
depend on assumptions about the variables involved or 
their relationship with the outcome. Instead, they capture 
complex relationships in a data-driven manner, includ-
ing nonlinearity and interactions that may be difficult 
to identify otherwise. These models have been used for 
the prediction of outcomes in cardiovascular medicine 
[9–11].

This study aims to evaluate novel ML-based models to 
more accurately predict the risk of PCI-induced AKI in 
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ACS patients and subsequently reduce the risk of long-
term complications. The efficacy of ML-based mod-
els will be compared with traditional stepwise selection 
models, and the study will investigate whether machine 
learning-based models can sufficiently reduce the vari-
ables needed for disease prognosis prediction.

Methods
Study design
We retrospectively reviewed all patients with ACS [ST-
elevation myocardial infarction (STEMI), non-STEMI, 
and unstable angina (UA)] who underwent PCI at Tehran 
Heart Center between 2015 and 2020. The ethics com-
mittee of Tehran Heart Center approved this study (IR.
TUMS.MEDICINE.REC.1402.178). The informed con-
sent was waived due to the retrospective design of this 
study.

Variable’s definition and outcome
Pre-procedural variables used were: gender, age, left ven-
tricular ejection fraction (LVEF), atrial fibrillation (AF), 
fasting plasma glucose (FPG), triglycerides (TG), total 
cholesterol (TC), low-density lipoprotein cholesterol 
(LDL-C), high-density lipoprotein cholesterol (HDL-C), 
drug history (lipid-lowering, anti-diabetes, anti-hyper-
tension, anti-arrhythmia, and anti-thrombotic), hema-
tocrit, body mass index (BMI), estimated glomerular 
filtration rate (eGFR), creatinine (Cr), type of diabetes 
management, past medical histories (cardiac, renal, pre-
vious PCI, previous CABG), and CAD risk factors.

Procedural variables were: non-ST elevation myo-
cardial infarction (NSTEMI) in coronary angiography 
(CAG), acute MI in CAG, treated vessel, procedure 
result, stenosis, stent diameter, stent length, stent infla-
tion pressure, post-procedural complications (arrhyth-
mia, cardiopulmonary resuscitation (CPR), aborted 
cardiac arrest, and procedure-induced shock).

AKI, the primary outcome in this study, was defined 
based on the acute kidney injury necrosis (AKIN) as an 
absolute increase of ≥ 0.3 mg/dL or a relative increase of 
≥ 50% in serum creatinine after the procedure [12].

Data cleaning
At first, patients with missing data for follow-up were 
removed and missing data for other features were han-
dled through imputation with median values for numeri-
cal features and mode for categorical ones. Notably, 
features with more than 40% missing data were removed 
from the models. Then, the patients with end-stage renal 
disease (ESRD) (eGFR < 15  mL/min) were excluded. 
Moreover, we excluded individuals with implausible 
creatinine values (Cr < 0.3  mg/dL or Cr > 4.0  mg/dL). 

Label encoder (from the scikit-learn library) was used to 
change categorical variables into numerical variables.

Train/test split and feature selection
We randomly assigned each patient to the train (80%) 
or test (20%) dataset using stratified splitting. Five-fold 
cross-validation was used in this study for feature selec-
tion and hyperparameter tuning. To find the most impor-
tant variables among the vast number of procedural and 
post-procedural features, and to reduce the complex-
ity of our models, we first trained an RF model on these 
features from our training dataset as our feature selec-
tor. We selected the top 15 features based on the feature 
importance given by this model. This cutoff was defined 
as we wanted to use features, sum of which contributed 
to 80% of the total feature importance. The selected fea-
tures are used as our procedural features to train the 
main models in this study. Moreover, SHapley Additive 
ExPlanations (SHAP), as a game-based feature analysis 
technique [13], based on the CatBoost model were used 
to generate beeswarm plots for feature importance.

We feature-engineered a few variables to provide the 
models with more context and useable features. As there 
were multiple creatinine measurements before the PCI 
procedure, we added creatinine standard deviation, cre-
atinine mean, and creatinine change (defined as the dif-
ference between the last creatinine before PCI and the 
first creatinine levels), in addition to the last creatinine 
measurement before PCI for each patient.

Moreover, as there were multiple binary features for 
each patient encoding various past medical conditions, 
risk factors, and drug history, we defined the new fea-
tures to reduce the complexity of our models. This was 
based on the fact that in most cases there was not a high 
number of cases positive for each feature and by merging 
them, the models could take advantage of variables with 
a higher proportion of positive cases. The following fea-
tures were used: (i) cardiac risk factors which are defined 
as the number of all cardiac risk factors each patient had 
(family history, hyperlipidemia, diabetes, and hyperten-
sion); (ii) cardiac past medical history (PMH), which is 
defined as the number of cardiac conditions (STEMI, 
NSTEMI, CHF, PMH valvular heart disease, peripheral 
vascular disease, and CPR), renal PMH (renal failure, and 
dialysis); (iii) other PMH (SA, UA, chronic lung disease); 
(iv) anti-arrhythmic, which is defined as the number of 
all anti-arrhythmic medications the patient has been 
using (Digoxin and Amiodarone); (v) anti-thrombotic 
and platelet (Aspirin, Clopidogrel, and Warfarin); (vi) 
anti-hypertension (angiotensin receptor blockers, beta-
blockers, calcium channel blockers, and diuretics); and 
(vii) diabetes medications (metformin, glibenclamide, 
acarbose, and insulin).
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Model development
We used five models to predict AKI in patients who 
underwent PCI: Naïve Bayes (NB), logistic regression 
(LR), CatBoost (CB), multilayer perception (MLP), and 
Random Forest (RF). Each model was trained and evalu-
ated using five-fold cross-validation. Test data remained 
unseen during model development.

Model evaluation
Models were evaluated using three metrics: area under 
the receiver operating characteristics curve (AUC), sen-
sitivity, and specificity. The AUC is independent of the 
threshold and measures the discriminative ability of 
models by plotting the true positive rate against the false 
positive rate. Different AUC scores could be categorized 
as follows: (1) outstanding (AUC ≥ 0.9), (2) excellent 
(0.8 ≤ AUC < 0.9), (3) acceptable or fair (0.7 ≤ AUC < 0.8), 
(4) poor (0.6 ≤ AUC < 0.7), and no discrimination 
(AUC < 0.6). Finally, to make the RF model explainable 
and assess the effect of each variable on overall predictive 
ability, we used an explainable AI method on positive and 
negative individual cases separately, to gain more insight 
into the effect of each feature on the final probability pre-
dicted by the RF model [14].

Statistical analysis
Mean ± standard deviation or proportion (percentage) 
was used for reporting baseline characteristics of patients 
who developed and did not develop AKI in each of the 
test and train cohorts. Regarding AUCs, we calculated 
the 95% confidence interval (CI) of AUCs using a 1000-
time bootstrap in the test cohort. We developed the 
models and performed all the analyses using Python (ver-
sion 3.8). LR, RF, MLP, and NB models were trained using 
the scikit-learn (1.0.2) library [15] and CB using the Cat-
Boost library (version 1.2) Python library.

Results
Patient characteristics
A total of 4592 patients were identified among which 
646 (14.1%) had developed AKI after undergoing PCI. 
The train data consisted of 3672 (80%) patients (517 had 
AKI), and the test data included 920 cases (20%), among 
which 129 had AKI. Mean age of the total population 
was 65.6 ± 11.2 years (69.2 ± 11.6 in the AKI group and 
65 ± 11.2 in the non-AKI group) and males contributed to 
73.1% of the overall cohort. Moreover, with a mean BMI 
of 28.1 ± 4.4 kg/m2, 57.7% had hypertension, 44.9% were 
diabetic, and 39.1% were smokers. Recorded data showed 
that 82.3% of patients with AKI and 63.1% of those with-
out had acute MI (STEMI or NSTEMI). Details of all 
baseline characteristics and angiography data for the test 
and train cohort are shown in Table 1.

Feature importance
Feature importance plots based on LR coefficients, RF 
model, and CB model for the prediction of AKI after 
PCI are shown using pre-procedural features in Fig.  1 
and using all features in Fig.  2. The beeswarm plots for 
SHAP values based on the CB model are also illustrated 
in Fig. 3.

Pre‑procedural features
Figure 1 shows feature ranks based on LR coefficients in 
addition to the RF and CB models using pre-procedure 
features only. As illustrated in Fig.  1A, LVEF had the 
highest negative correlation with AKI occurrence post-
PCI, while age had the highest positive association with 
the outcome. RF model also ranked LVEF as the top fea-
ture, followed by FPG and the last creatinine before PCI 
(Fig.  1B). Finally, the CB model represented LVEF and 
FPG as the highest predictors of AKI post-PCI (Fig. 1C). 
Also, as shown in Fig.  3A as a SHAP beeswarm plot, 
LVEF ranked the highest classifier among the pre-proce-
dural features.

Pre‑procedural, procedural, and post‑procedural features
LR model showed that LVEF was the main predictor of 
AKI with an inverse relationship between AKI and LVEF. 
However, age and acute MI in coronary angiography 
were the top positively correlated features, as depicted 
in Fig. 2A. Investigating the feature importance of the RF 
model, LVEF was the main predictor while aborted car-
diac arrest in PCI, and CPR in PCI were the second and 
third top predictors (Fig. 2B). Last creatinine before PCI, 
FPG, mean creatinine, and eGFR were the next predic-
tors. Figure 2C shows that LVEF, age, and BMI were the 
top three features, considering the CB model. Similarly, 
the SHAP beeswarm plot shown in Fig. 3B reports LVEF 
and age as the main discriminatory variables among all 
features.

Model’s evaluation
In this study five models were assessed for the prediction of 
AKI after PCI, the evaluation was once done using pre-pro-
cedural features only and once with pre-procedural, proce-
dural, and post-procedural features, details are described 
in Table  2. In pre-procedural features-only analysis, the 
CB model outperformed the other models with an AUC 
of 0.755 (95% CI 0.713–0.797). RF and LR models had the 
same AUC of 0.74 (95% CI 0.694–0.783 and 0.689–0.785, 
respectively), followed by the MLP model with an AUC of 
0.732 (95% CI 0.687–0.778) (Fig. 4A). In terms of sensitiv-
ity and specificity, RF and MLP recorded the highest, with 
75.97% and 64.35% sensitivity and specificity, respectively. 
When procedural and post-procedural features were added 
to training features, the RF model performed the best in 
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Table 1  Baseline characteristics of patients who developed and not developed AKI in train and test cohorts

Train cohort Test cohort

AKI (n = 517) No AKI (n = 3155) AKI (n = 129) No AKI (n = 791)

Age (years) 69.5 ± 11.5 65 ± 11.2 69.5 ± 12.1 64.9 ± 11.1

Sex (male) 352 (68.1%) 2352 (74.5%%) 89 (69%) 566 (71.6%)

BMI (kg/m2) 28.1 ± 4.6 28.1 ± 4.4 28.8 ± 4.6 28.1 ± 4.4

Waist circumference (cm) 100.7 ± 11.1 100.2 ± 10.5 101.4 ± 9.8 99.8 ± 10.7

Hypertension 334 (64.6%) 1782 (56.5%) 87 (67.4%) 448 (56.6%)

Diabetes 311 (60.1%) 1321 (41.9%) 74 (57.4%) 358 (45.2%)

Cigarette smoking 172 (33.3%) 1283 (40.7%) 45 (34.9%) 296 (37.4%)

Heart failure 51 (9.9%) 138 (4.4%) 19 (14.7%) 32 (4%)

Atrial fibrillation 15 (2.9%) 37 (1.2%) 4 (3.1%) 8 (1%)

Valvular heart disease 26 (5%) 84 (2.7%) 3 (2.3%) 19 (2.4%)

Peripheral vascular disease 1 (0.2%) 15 (0.5%) 1 (0.8%) 3 (0.4%)

Chronic lung disease 15 (2.9%) 67 (2.1%) 1 (0.8%) 19 (2.4%)

Previous PCI 82 (15.9%) 509 (16.1%) 20 (15.5%) 130 (16.4%)

Previous CABG 74 (14.3%) 402 (12.7%) 19 (14.7%) 115 (14.5%)

History of CVA 37 (7.2%) 103 (3.3%) 11 (8.5%) 33 (4.2%)

Opium 66 (12.7%) 496 (15.7%) 18 (13.9%) 102 (12.9%)

History of STEMI 36 (7%) 188 (5.9%) 5 (3.9%) 34 (4.3%)

History of NSTEMI 46 (8.9%) 428 (13.6%) 23 (17.8%) 113 (14.3%)

History of UA 60 (11.6%) 831 (26.3%) 10 (7.7%) 194 (24.5%)

History of SA 4 (0.8%) 49 (1.5%) 2 (1.5%) 18 (2.3%)

LVEF (%) 38.9 ± 10.2 43.8 ± 8.8 38 ± 10.1 44.3 ± 8.7

Total cholesterol (mg/dL) 151.9 ± 43.2 155 ± 41.8 152.8 ± 44.8 154.4 ± 42.1

Triglyceride (mg/dL) 134.7 ± 84.1 151.5 ± 98.1 134.2 ± 81 150.8 ± 97.8

LCL-C (mg/dL) 94.4 ± 35.2 96.6 ± 34.9 96.3 ± 37.1 96 ± 35.5

HDL-C (mg/dL) 39.2 ± 10.1 38.4 ± 9.6 39.9 ± 10.7 38.5 ± 9.6

FPG (mg/dL) 155.1 ± 78.6 130.1 ± 56.8 153.1 ± 76.3 134.9 ± 59.7

Last creatinine before PCI (mg/dL) 1.22 ± 0.56 1.09 ± 0.34 1.21 ± 0.48 1.09 ± 0.35

Hemoglobin (g/dL) 14 ± 2.2 14.6 ± 1.9 13.9 ± 2.3 14.4 ± 1.9

PCI and angiographic findings

 Acute MI (STEMI and NSTEMI) 428 (82.8%) 1980 (62.7%) 104 (80.6%) 508 (64.2%)

 NSTE-ACS 170 (32.9%) 1404 (44.5%) 50 (38.8%) 446 (56.4%)

 CPR 8 (1.5%) 46 (1.5%) 2 (1.5%) 9 (1.1%)

 Lesion length (mm) 27.3 ± 14 27.3 ± 14.2 28.9 ± 13.8 26.9 ± 14

 Pre-procedure stenosis (%) 92.8 ± 8.9 92.9 ± 8.3 95.3 ± 10.6 92.7 ± 8.8

Pre-procedure TIMI flow

 0 233 (45.1%) 1031 (32.7%) 69 (53.5%) 245 (31%)

 1 25 (4.8%) 139 (4.4%) 9 (7%) 39 (4.9%)

 2 84 (16.2%) 474 (15%) 19 (14.7%) 117 (14.8%)

 3 174 (33.6%) 1511 (47.9%) 32 (24.8%) 390 (49.3%)

Vessel severity

 Single vessel 111 (21.5%) 798 (25.3%) 22 (17.1%) 189 (23.9%)

 Two vessel 151 (29.2%) 1165 (36.9%) 42 (32.6%) 285 (36%)

 Three vessel 251 (48.6%) 1185 (37.6%) 65 (50.4%) 315 (39.8%)

ACC/AHA category

 A 0 (0%) 5 (0.2%) 0 (0%) 3 (0.4%)

 B1 47 (9.1%) 449 (14.2%) 6 (4.6%) 129 (16.3%)

 B2 74 (14.3%) 430 (13.6%) 21 (16.3%) 100 (12.6%)

 C 396 (76.6%) 2270 (71.9%) 102 (79.1%) 559 (70.7%)
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terms of AUC (0.775, 95% CI 0.730–0.818), slightly higher 
than the CB model (AUC 0.774, 95% CI 0.728–0.816). LR 
and NB models had AUCs of 0.770 (95% CI 0.725–0.811) 
and 0.763 (95% CI 0.715–0.804), respectively (Fig.  4B). A 

sensitivity of 82.95% in the CB model and a specificity of 
82.93% in the NB model were the highest sensitivity and 
specificity among the models. With regard to making the 
final RF model explainable, as shown in Fig. 5, the effect of 

Data are represented as mean ± standard deviation, or number (%)

BMI body mass index, PCI percutaneous coronary intervention, CABG coronary artery bypass grafting, CVA cerebrovascular accident, STEMI ST-elevation myocardial 
infarction, UA unstable angina, SA stable angina, LVEF left ventricular ejection fraction, LCL-C low-density lipoprotein cholesterol, HCL-C high-density lipoprotein 
cholesterol, FPG fasting plasma glucose, NSTE-ACS non-ST elevation acute coronary syndrome, CPR cardiopulmonary resuscitation, TIMI thrombolysis in myocardial 
infarction, ACC​ American College of Cardiology, AHA American Heart Association

Table 1  (continued)

Train cohort Test cohort

AKI (n = 517) No AKI (n = 3155) AKI (n = 129) No AKI (n = 791)

PCI location

 Proximal 185 (35.8%) 1203 (38.1%) 45 (34.9%) 289 (36.5%)

 Non-proximal 247 (47.8%) 1567 (49.7%) 63 (48.8%) 405 (51.2%)

 Ostial 85 (16.4%) 385 (12.2%) 21 (16.3%) 97 (12.3%)

Fig. 1  Feature importance for models using pre-procedural features only. A Logistic Regression Coefficients; B Random Forest Feature Importance; 
C CatBoost Feature Importance. LVEF left ventricular ejection fraction, FPG fasting plasma glucose, CPR cardiopulmonary resuscitation, PCI 
percutaneous coronary intervention, BMI body mass index, TC total cholesterol, LDL-C low-density lipoprotein cholesterol, PMH past medical history, 
UA unstable angina, MI myocardial infarction, TG triglyceride, HDL-C low-density lipoprotein cholesterol, CAD coronary artery disease, CABG coronary 
artery bypass grafting

Fig. 2  Feature importance for models using pre-procedural, procedural, and post-procedural features. A Logistic Regression Coefficients; B Random 
Forest Feature Importance; C CatBoost Feature Importance. LVEF left ventricular ejection fraction, FPG fasting plasma glucose, CPR cardiopulmonary 
resuscitation, PCI percutaneous coronary intervention, BMI body mass index, TC total cholesterol, LDL-C low-density lipoprotein cholesterol, PMH 
past medical history, UA unstable angina, MI myocardial infarction, TG triglyceride, HDL-C low-density lipoprotein cholesterol, CAD coronary artery 
disease, CABG coronary artery bypass grafting
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each feature in terms of raw probability is observed for one 
positive (5A) and one negative case (5B). The occurrence of 
the post-procedure arrest and CPR was effective in assign-
ing a high probability for the positive cases by the RF model 
and the normal FPG of the patient was effective in reduc-
ing the overall probability. In negative cases, LDL-C and 
creatinine change had the highest negative impact while 
acute MI, NSTEMI/UA, and LVEF had the highest positive 
impact.

Discussion
In this registry-based study, we employed ML algo-
rithms to predict the AKI incidence in ACS patients 
who underwent PCI. Our results indicated a novel step 

toward predicting AKI occurrence following PCI with 
the aid of ML, as all five ML models (RF, LR, CB, MLP, 
and NB) were able to enhance the prediction of AKI 
using both pre-procedural features only and all features 
combined data, with all models exhibiting an accept-
able predictive capability (AUC value > 0.7), based on 
AUC interpretation [16]. While the CB model was the 
best when running the models with pre-procedural fea-
tures only (AUC = 0.755), the RF model demonstrated 
the best performance using all features combined data 
(AUC = 0.775). The study also found that the RF model 
outperformed in terms of sensitivity (75.97%) and MLP 
had the highest specificity (64.35%) in the pre-procedural 
features analysis. Once procedural features were added, 

Fig. 3  ROC-AUC Curves for the five ML models. A Using pre-procedure features only; B using pre-procedure and procedural features

Table 2  Models’ evaluation for predicting AKI after PCI

AKI acute kidney injury, PCI percutaneous coronary intervention, AUC​ area under the curve, CI confidence interval

Pre-procedural features only All features

Sensitivity Specificity AUC (95% CI) Sensitivity Specificity AUC (95% CI)

Random Forest 75.97% 61.44% 0.740 (0.694–0.783) 81.4% 60.56% 0.775 (0.730–0.818)

Logistic Regression 75.19% 59.29% 0.740 (0.689–0.785) 76.74% 60.81% 0.770 (0.725–0.811)

Naïve Bayes 73.46% 57.9% 0.727 (0.682–0.768) 48.06% 82.93% 0.763 (0.715–0.804)

CatBoost 73.64% 64.1% 0.755 (0.713–0.797) 82.95% 62.58% 0.774 (0.728–0.816)

Multi-layer Perceptron 69.77% 64.35% 0.732 (0.687–0.778) 75.19% 65.36% 0.757 (0.708–0.804)
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the CB model became the best model in terms of sensi-
tivity (82.95%), while the NB model exhibited the highest 
specificity (82.93%).

As AKI is a preventable complication after PCI, a pre-
cise risk prediction system is needed which can improve 
clinical decision-making and management strategies 

such as sufficient hydration and contrast volume reduc-
tion in high-risk patients [7, 17]. The traditional models 
for the prediction of the risk of AKI after PCI have pro-
vided a notable enhancement in decision support and 
quality of care; however, they have several limitations 
and drawbacks, leading to underestimating the risk of 

Fig. 4  SHAP beeswarm plot for feature importance based on the CatBoost model. A Using pre-procedure features only; B using pre-procedure 
and procedural features

Fig. 5  Effects of each variable on the RF model using pre-procedure, procedural, and post-procedural features for (A) one positive case (with 
AKI), B one negative case (without AKI). LVEF left ventricular ejection fraction, FPG fasting plasma glucose, CPR cardiopulmonary resuscitation, PCI 
percutaneous coronary intervention, BMI body mass index, TC total cholesterol, LDL-C low-density lipoprotein cholesterol, PMH past medical history, 
UA unstable angina, MI myocardial infarction
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AKI in a small proportion of patients, while overestimat-
ing it in others [18, 19]. For instance, relying on subjec-
tive assumptions for choosing the candidate variables, 
which are often transformed into categorical variables 
due to the convenience of calculating the risk scores [6]. 
Moreover, the single-center or single-country nature 
of these studies may lead to limited application in other 
clinical settings and highlight the need for localized mod-
els designed for other regions. Another limitation was 
the lack of control for renal protective medications and 
the lack of implementing procedural features in some [7]. 
Even though helpful, the conventional models are not 
sufficiently precise for Individual personalized evalua-
tion and shared decision-making models in the modern 
medicine [1, 20]. Therefore, looking for more compe-
tent alternatives to traditional risk estimation models 
seems indispensable. Through this purpose, ML models 
are being developed rapidly regarding risk stratification 
of AKI for further safety considerations before, during, 
and after PCI. The computational discipline of ML-based 
methods allows the algorithm formulation into models 
capable of recognizing complex patterns or interactions 
when utilizing extensive data [8, 21]. By incorporating 
ML into the model development process, there is the 
potential to enhance the accuracy of the AKI risk strati-
fication [6, 22]. In addition, the utilization of all availa-
ble variables in ML modeling along with a permutation 
test for variable selection could contribute to promoting 
the performance of the ML modeling. Accordingly, ML 
models demonstrated superior performance compared to 
conventional models in terms of predictive performance 
and risk stratification of AKI for patients with PCI [6].

Also, a recent study conducted by Kuno et al. attempted 
to compare the conventional logistic regression predic-
tion model with that of an ML model concerning the cal-
culation of the risk of AKI after PCI. They used the light 
gradient boosting model (GBM) ML algorithm, along 
with Lasso and SHAP methods for variable selection. 
Their results indicated that the ML model provided com-
parable risk quantification accuracy using fewer variables 
than the logistic regression model [8]. Our study had sev-
eral similarities and differences with this study. One of 
the key differences was that in contrast with Kuno et al. 
study, we designed our ML models both with and with-
out operative variables which might be helpful in clini-
cal settings when operative features can also be utilized. 
The predictive ability of our models was comparable with 
those of this study in terms of AUC. In this study, the LR 
model had an AUC of 0.755 in the test dataset, while in 
ours, LR achieved an AUC of 0.74 and 0.77 in the model 
with pre-procedure features and the model with all fea-
tures, respectively. One of the other differences was that 
this study used a different feature selection method, first 

using Lasso through LR and then subsequently with 
SHAP based on GBM, however, we implemented the RF 
feature selector while demonstrating feature importance 
with LR coefficients, RF model, and CB model, in addi-
tion to SHAP beeswarm plots.

In line with our results, the cohort study of Sun et al. 
suggested that ML algorithms, particularly the RF model, 
can promote the accuracy of contrast-induced AKI risk 
stratification following acute myocardial infarction. 
They identified that the RF machine learning algorithm 
achieved the highest sensitivity of 71.9%, an accuracy of 
73.5%, and an AUC of 0.82, which notably outperformed 
LR models [1]. In agreement with previous studies, our 
results revealed that the RF model has the best predictive 
ability. The RF model, constructed using an ensemble of 
multiple decision trees, can overcome the issue of over-
fitting in ML analysis, by aggregating decisions across a 
vast number of randomly generated trees [23, 24]. One 
key advantage of the RF model is its ability to reduce the 
number of variables, thereby simplifying the final model 
which could be explained more easily and reducing the 
risk of overfitting it on noisy features. Furthermore, 
highly correlated features do not cause multi-collinearity 
issues for RF models. Hence, due to the RF model being 
an inherent ensemble model (ensemble of lots of decision 
trees) and knowing that it is more robust to inter-corre-
lated features, we can expect better performance in most 
cases where RF is used, however, it’s not a universal rule 
[25, 26].

However, in contrast to the finding of the present study, 
Niimi et  al. demonstrated that the XGBoost ML model 
can significantly improve the discrimination value for 
predicting the risk of AKI following PCI (C-statistics 
of 0.84, P < 0.001) [27]. XGBoost was one of the ideal 
candidates to be trained in our study as well; however, 
since XGBoost needs a large dataset such as the one in 
Niimi et  al. study, acceptable performance could not be 
obtained using preliminary analyses in our study. In con-
trast, we used the CatBoost model, similar to XGBoost 
but with a lower chance of overfitting on smaller data-
sets. In our study, this model had the highest perfor-
mance when using pre-procedural features, showing its 
strength in the prediction of AKI.

In a more recent publication, the support vector 
machine (SVM) model showed the most outstanding 
AUC of 0.784 in terms of identifying the risk of contrast-
induced nephropathy in elective PCI patients. The SVM 
model also outperformed logistic regression models [28]. 
Therefore, although currently available evidence suggests 
the potential efficacy of ML models for AKI risk predic-
tion after PCI, selecting the optimal model has remained 
controversial. Additionally, it has been shown that in 
datasets with imbalanced data, such as ours, RF could 
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outperform support vector machine (SVM) and XGBoost 
[29]. SVM is also a time-consuming algorithm that takes 
plenty of time to train the models. On the other hand, the 
K-nearest neighbor (KNN) is not able to show the differ-
ences in the predictive ability of features. Hence, these 
models are not routinely used by the newer studies and 
have been replaced by methods such as RF.

In this study, we report the feature importance of the 
RF model, the CB model, and the coefficients of the 
LR model, both with and without procedural findings. 
Although selecting the suitable features based on the RF 
model might lead to eventually the overall better perfor-
mance of the RF model, it should be noted that RF fea-
ture selection has been shown to perform better than 
the two other classifiers (Boruta and Recursive Feature 
Elimination) [26]. In performing feature engineering, we 
combined some of the variables such as risk factors and 
creatinine levels to produce new variables. Mean and 
SD of creatinine levels measured at different time points 
before PCI might add some complexity to the models. 
We created this variable to use more of the data avail-
able for patients. Clinicians can benefit from these values 
if more than one creatinine level is available during the 
hospitalization course. However, this is not a limitation, 
since there were many patients with only one creatinine 
level for which the model was also optimized. With the 
use of electronic records, the mean and SD of all cre-
atinine levels measured before PCI can be added to the 
model to enhance predictive ability.

Based on the LR model coefficients, LVEF and age had 
the highest negative and positive correlation with AKI 
occurrence post-PCI, in both pre-procedural and all 
features. The RF model also showed LVEF as the most 
important feature, followed by FPG and the last creati-
nine, mean creatinine, and eGFR using pre-procedural 
findings. Previously, several investigations showed that 
hypotension, intra-aortic balloon pump, congestive 
heart failure, chronic kidney disease, diabetes, age > 75 
years, anemia, and volume of contrast (known as Meh-
ran score) contributed to AKI incidence after PCI [18, 
30], while several of them have been associated with 
major adverse events as well [31–33]. Also, the combina-
tion of age, serum creatinine, EF, and eGFR levels (calcu-
lated as ACEF-MDRD score) was found to be associated 
with the risk of AKI after PCI [34, 35]. Similarly, a study 
reported that contrast-induced AKI (CI-AKI) follow-
ing PCI was observed more frequently in patients with 
diabetes, LVEF < 50%, older age, severe heart failure fol-
lowing acute MI, previous aspirin use, and higher ACEF-
MDRD score [36]. Additionally, it has been suggested 
that reduced LVEF and heart failure could increase the 
risk of AKI in patients who underwent coronary artery 
bypass grafting [37]. So far, evidence has demonstrated 

that higher FPG levels can participate in impaired kidney 
function, leading to an increased risk of AKI while higher 
FPG levels are often associated with other risk factors for 
AKI, which can further increase the likelihood of devel-
oping AKI after PCI [38].

In a study, Lasso and SHAP methods in ML selected 
that ST-elevation MI, eGFR, age, preprocedural hemo-
globin, non-ST-elevation MI/unstable angina, heart 
failure at admission, and cardiogenic shock as the perti-
nent predictor for AKI risk after PCI [8]. On the other 
hand, Ma et  al. reported 11 important predictors of 
CI-nephropathy after PCI, including uric acid, periph-
eral vascular disease, cystatin C, creatine kinase-MB, 
hemoglobin, N-terminal pro-brain natriuretic peptide, 
age, diabetes, systemic immune-inflammatory index, 
total protein, and low-density lipoprotein, using SHAP 
method [28]. Also, age, serum creatinine level, and LVEF 
were among the top 20 ranked important variables con-
cerning CI-AKI risk stratification after acute MI, using 
the Boruta ML algorithm [1].

Given the potential importance of AKI as an adverse 
event after PCI, models such as the ones investigated in 
this study can have clinical applications in the prediction 
of AKI post-PCI in patients with ACS, after further con-
firmation in larger studies. With implementing easy-to-
use variables both pre-procedural and procedural, these 
ML-based models provided acceptable predictions. Our 
models showed similar prediction ability between mod-
els with and without procedural variables. It is of impor-
tance since intra-procedural features are dependent on 
the skill of the team performing PCI which makes it sub-
jective and, hence, makes the inherent risk of patients 
less highlighted [18, 39]. Individualized risk stratification 
in predicting PCI can lead to better prevention of AKI 
after PCI. LVEF, age, and FPG were the main predictors 
of AKI which are easy to measure in patients with ACS 
admitted to PCI units. Clinicians could take advantage 
of these models for the prediction of AKI and therefore, 
provide better care for those at higher risk. These kinds 
of models could be used regionally or even internation-
ally when assessed in different settings and on different 
populations.

Several limitations to our research need to be men-
tioned. Firstly, the single-center nature of our study could 
affect our findings. Furthermore, it is essential to consider 
the potential impact of not incorporating confounding 
variables. It is also important to note that electrocardio-
gram data and follow-up laboratory data were not avail-
able in this databank. Another limitation of our study was 
missing data that we handled by replacing with median in 
continuous variables and with mode in categorical ones, 
which might not have been the optimal way for doing so; 
however, the prediction of missing data was not possible 
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due to not having a large enough dataset. Moreover, since 
we tuned the threshold for classifying the groups to opti-
mize sensitivity (recall), we were not able to assess the 
calibration of our models, and the probabilities in mod-
els were only used to identify the optimal threshold. Also, 
the fact that our data were imbalanced and we tuned our 
models for better prediction of AKI based on AUC using 
five-fold cross-validation, led to relatively lower specifici-
ties, compared to AUCs and sensitivities. This is a limita-
tion of our study; however, it should be considered that in 
these types of adverse events, higher sensitivity is much 
favored over higher specificity since the clinician’s aim 
is to not miss any potentially high-risk case in terms of 
AKI. Also, in our study, the threshold was adjusted for 
higher sensitivity while in other clinical settings, it could 
be tuned for higher specificity based on clinical settings. 
Finally, despite using fivefold cross-validation in our 
training cohort and evaluating the models on an unseen 
test cohort, the lack of external validation in our study 
might threaten the generalizability of our findings and 
models.

Conclusion
In conclusion, the ML models such as RF, LR, CB, MLP, 
and NB algorithms, showed an acceptable predictive per-
formance for the risk of AKI following PCI, with RF and 
CB providing the greatest discriminations. Also, the most 
important features for the AKI prediction were detected, 
and LVEF demonstrated the largest coefficient in all pre-
dicting models. Therefore, it could be suggested that ML 
models, particularly the RF model, improve the accuracy 
of AKI prediction in patients undergoing PCI, which has 
significant implications for clinical decision-making and 
management to prevent AKI incidence. However, further 
studies are necessitated to validate the findings of the 
present study.
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