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Abstract 

Cancer is a disease that can cause abnormal cell growth and can spread throughout the body. It is among the most 
significant causes of death worldwide, resulting in approx. 10 million deaths annually. Many synthetic anticancer 
drugs are available, but they often come with side effects and can interact negatively with other medications. Addi‑
tionally, many chemotherapy drugs used for cancer treatment can develop resistance and harm normal cells, lead‑
ing to dose-limiting side effects. As a result, finding effective cancer treatments and developing new drugs remains 
a significant challenge. However, plants are a potent source of natural products with the potential for cancer treat‑
ment. These biologically active compounds may be the basis for enhanced or less toxic derivatives. Herbal medicines/
phytomedicines, or plant-based drugs, are becoming more popular in treating complicated diseases like cancer due 
to their effectiveness and are a particularly attractive option due to their affordability, availability, and lack of serious 
side effects. They have broad applicability and therapeutic efficacy, which has spurred scientific research into their 
potential as anticancer agents. This review focuses on Paclitaxel (PTX), a plant-based drug derived from Taxus sp., 
and its ability to treat specific tumors. PTX and its derivatives are effective against various cancer cell lines. Researchers 
can use this detailed information to develop effective and affordable treatments for cancer.
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Introduction
Cancer is a severe public health issue, with around six 
million new cases yearly. Research has identified several 
significant causes, including exposure to certain chemi-
cals and types of electromagnetic radiation in the diet, 
environment, or workplace [1]. The level of risk associ-
ated with these exposures is a topic of much debate, 
prompting preventative efforts such as the US national 
"Smoke Out" program, which aims to limit exposure to 
carcinogenic chemicals [2]. Many advancements have 
been made in developing anticancer medications due to 
studies on the molecular pathways involved in cancer 
growth. However, despite these efforts, using chemically 
made medications has not significantly improved overall 
survival rates. Treating cancer remains a challenging task 
with limited success. Available treatment choices com-
prise surgery, radiation therapy, and systemic chemo-
therapy. In the chemotherapy drug category, medications 
like methotrexate (antimetabolites), cisplatin and doxo-
rubicin (DNA-interactive drugs), taxanes (anti-tubulin) 
are most widely used in addition to other hormones, and 
molecular targeting drugs [3]. Chemotherapy has several 
disadvantages, such as cancer recurrence, drug resist-
ance, and harmful effects on healthy tissues, which can 
hinder the effectiveness of anticancer drugs and nega-
tively affect a patient’s well-being. Researchers are always 
searching for new, improved therapies with fewer side 
effects to overcome these obstacles and maintain the 
quality of life for those living with cancer [4].

Medicinal plants have numerous advantages over arti-
ficial products, as they are non-toxic to normal human 
cells. Conventionally, cancer is treated with radiother-
apy and chemotherapy, but unfortunately, these meth-
ods have adverse side effects that can seriously harm a 
patient’s health. These side effects include neurological, 
cardiac, renal, and pulmonary toxicity. Therefore, devel-
oping an alternative strategy that utilizes anticancer 
medications that are more effective and less hazardous 
than those currently available is crucial. The National 
Cancer Institute, Maryland, USA has examined approxi-
mately 35,000 plant species to determine their potential 
anti-cancer properties. As a result, they have discovered 
3000 species having repeatable anticancer efficacy [5]. To 
develop additional medications for treating this illness, 
it is indispensable to research the primary anticancer 
agents that have arisen from natural sources. Medici-
nal plants contain secondary metabolites such as flavo-
noids, flavones, anthocyanins, lignans, coumarins, and 
catechins. These bioactive molecules are responsible for 
the high levels of antioxidants in medicinal plants [6, 7]. 
Research on herbal treatments has shifted nowadays due 
to expensive synthetic drugs and their side effects. Sig-
nificantly, interest in preventing, eradicating, and treating 

diseases like cancer and metabolic disorders has risen 
because of more deaths worldwide [8, 9]. These studies 
have shown that Taxus sp. and its components, espe-
cially Paclitaxel (PTX), have various biological actions.

There are at least 10 diverse species of Taxus, such as T. 
baccata, T. cuspidata, T. wallichiana, and T. xmedia cv. 
Hicksii, which contain taxol [10–12]. The first instance of 
Taxol, specifically Taxus brevifolia, was created by Wani 
and colleagues by utilizing Nutt (Taxaceae) and a syn-
thetic form of the plant [13]. After the finding of Taxol, 
more than 400 naturally occurring taxol analogs were 
discovered, leading to the isolation of numerous other 
taxoids. Typically, Taxus species contain a relatively small 
amount of taxol, ranging from 0.001 to 0.06% of the dried 
bark’s weight [14]. Taxol is most prevalent in T. brevifo-
lia: bark, needles, roots, branches, seeds, and wood. PTX 
was first extracted from the stem bark of the western yew, 
Taxus brevifolia, in 1960s; Wani and colleagues discov-
ered its structure in 1971. Taxol® is a drug currently mar-
keted as PTX. It was approved for clinical use in 1994, 
with the first medicinal application being for the treat-
ment of ovarian cancer [15]. In 1971, researchers discov-
ered that PTX was the active ingredient in the extract. 
This drug belongs to the taxane family and has a unique 
chemical structure (Fig.  1a) with the molecular formula 
C47H51NO14. Taxus brevifolia, a type of Pacific yew, was 
originally used to obtain this compound. However many 
of the species of fungus Pestalotiopsis viz, Pestalotiopsis 
versicolor, Pestalotiopsis neglecta (isolated from Japanese 
Yew tree, Taxus cuspidata), Pestalotiopsis pauciseta (iso-
lated from Cardiospermum helicacabum) and Pestaloti-
opsis terminaliae was extracted from the fresh healthy 
leaves of Terminalia arjuna (arjun tree) and then exam-
ined for the ability to produce the anticancer medication 
taxol in a synthetic culture medium (Gangadevi [16–18]. 
According to [19], PTX is a vital anticancer medication to 
treat ovarian, breast, and lung cancer.

To treat a single patient, approximately 2  g of PTX is 
requisite, and this amount can be extracted from the 
3–10 tree’s bark. On average, taxol has a yield of 0.015% 
approximately. It takes 2000–2500 yew trees to produce 
just one kilogram of taxol [20–22]. The tree’s slow growth 
would cause its natural stands to be depleted entirely if it 
were harvested for taxol. Many researchers have used the 
bark of Taxus spp. instead of needles to obtain docetaxel 
and Taxotere, rather than PTX, to protect this crucial 
population [23–26]. Research on taxane diterpenoids, 
commonly known as taxoids, has increased over the past 
20 years from a small field of natural product chemistry 
into a nearly $1 billion business [27]. This is because the 
yew develops slowly, and losing its bark kills the tree. Bac-
catin III or 10-deacetyl baccatin III can be made widely 
available as a precursor without adversely hurting the 
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trees. The production of taxol and the recently released 
taxotere (docetaxel) began with 10-deacetyl baccatin 
III. As a result, taxol’s generic name was decided upon 
as PTX [28]. Six unique taxane diterpenoids have been 
found in the seeds of Taxus yunnanesis and Taxus chin-
ensis var. mairei [29].

PTX and its derivative docetaxel prevent cell mitosis by 
stabilizing the microtubule polymer, which leads to cell 
death [30, 31]. Due to a unique method of action target-
ing microtubule assembly, the FDA approved PTX for 
managing ovarian and breast cancer [32, 33]. Currently, 
PTX is used to treat breast, ovarian, and non-small cell 
lung cancer by itself or in combination with other medi-
cations [34, 35]. It operates by obstructing microtubules’ 
typical cell-division activity. PTX has anticancer proper-
ties, as the National Cancer Institute shows, that exam-
ined plant extracts from thousands of different species. 
PTX slows the advancement of the cell cycle, mitosis, 
and the proliferation of cancer cells by promoting tubu-
lin assembly into microtubules and inhibiting their dis-
sociation [36]. Contrary to previous tubulin-binding 
anticancer drugs, this one allows tubulin to assemble into 
microtubules [37, 38]. Clinical trials are being carried 

out for degenerative brain diseases, and it is employed 
in coronary heart disease, skin conditions, renal and 
hepatic fibrosis, inflammation, and axon regeneration 
[39, 40]. Beyond oncology, paclitaxel has found impor-
tant applications in the field of vascular devices such as 
stents and balloons. The paclitaxel-coated devices are 
used to address the restenosis in blood vessels following 
procedures like angioplasty (https://​www.​fda.​gov/​medic​
al-​devic​es/​cardi​ovasc​ular-​devic​es/​pacli​taxel-​coated-​
ballo​ons-​and-​stents-​perip​heral-​arter​ial-​disea​se. This 
strategy improves the effectiveness of treatments and 
subsequently improves patient outcomes, marking a sub-
stantial advancement in the fields of vascular medicine 
and interventional cardiology.

The fact that PTX is widely disseminated throughout 
the body volume demonstrates its affinity for the bound 
albumin protein. The liver mainly carries out PTX’s 
metabolism and involves biliary excretion. When PTX 
is taken in its entirety, 6–10% of it is found in urine as 
an unaltered medication, and 70% of it is excreted in 
feces with the metabolite 6-hydroxy PTX [41]. Despite 
PTX’s impressive anticancer activity, its lesser solu-
bility in water and other solvents restricts its use and 

Fig. 1  Chemical structure of paclitaxel and its derivatives. A Paclitaxel, B 2-debenzoyl-2-trigloyl paclitaxel, C baccatin III, D docetaxel, E cabazitaxel, 
and F Abraxane

https://www.fda.gov/medical-devices/cardiovascular-devices/paclitaxel-coated-balloons-and-stents-peripheral-arterial-disease
https://www.fda.gov/medical-devices/cardiovascular-devices/paclitaxel-coated-balloons-and-stents-peripheral-arterial-disease
https://www.fda.gov/medical-devices/cardiovascular-devices/paclitaxel-coated-balloons-and-stents-peripheral-arterial-disease
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bioavailability. However, PTX was blended with  cremo-
phor and dehydrated alcohol at a 50:50 v/v ratio to over-
come the solubility problem, but this alteration revealed 
significant adverse consequences, including hypersensi-
tivity and incompatibility with standard intravenous infu-
sion settings [42]. P-glycoprotein (P-gp), a substance that 
PTX is a substrate of, expels the drug from cells, leading 
to the advance of drug resistance [43]. Many P-gp inhibi-
tors were co-administered with PTX to overcome solu-
bility issues, including verapamil [44] and valspodar [45]. 
However, the outcomes were unsatisfactory due to these 
inhibitors’ toxic effects and ability to alter the pharma-
cokinetics and biodistribution of PTX.

In addition, this review tries to elucidate the vari-
ous forms of paclitaxel, their chemical makeup, semi-
synthetic derivatives, and how these substances work as 
anticancer medications. Scientific data supporting their 
classification as anticancer compounds and their cur-
rent and historical uses as beneficial remedies are also 
discussed. The review will contribute to a better under-
standing of plant-based cancer therapies, including dif-
ferent PTX and its derivatives.

Review methodology
In this review, we analyzed and discussed recent data on 
PTX’s chemo-preventive and chemotherapeutic effects. 
The most recent studies involving cellular and molecular 
anticancer mechanisms were reviewed based on pharma-
cological evidence in specialized databases such as Pub-
Med/MedLine, SCOPUS, Google Scholar, and the TRIP 
database. A database study revealed that from 1965 to 
2024, approximately 400 papers have been published on 
various aspects of paclitaxel. For the search, we used the 
following MeSH terms: “paclitaxel/chemistry”, “Taxol”, 
“Anticancer Chemotherapeutic Agents”, Anticancer ther-
apy use”, “Tumour immunotherapy”,” Taxol/paclitaxel kills 
cancer cell”, Carcinoma cell line/apoptosis. We included 
preclinical studies highlighting the mechanisms of action, 
signaling pathways, and molecular mechanisms of action 
of andrographolide. The studies that did not have precise 
pharmacological mechanistic results explained or that 
used homeopathic remedies were excluded. Plant taxon-
omy was validated with World Flora Online, and chemi-
cal formulations with PubChem [46, 47].

General characterization of PTX and its 
semi‑synthesis derivatives
One of the most important secondary metabolites known 
to have anticancer properties is taxol, a complex diter-
pene derived from Taxus spp. with a molecular weight 
of 853.9 Da. Its chemical name is 5, 20-epoxy-1,2,4,7,13-
hexahydroxytax-11-en-9-one-4, 10-diacetate-2-benzoate 
13 esters with (2R,3S)-N-benzoyl-3-phenylisoserine [48]. 

Taxol’s structural foundation comprises the A, B, and C 
ring systems, each containing various functional groups 
such as two hydroxyl groups, one benzoyl group, two 
acetyl groups, and an oxetane ring. The C13 side chain, 
specifically (2′R,3′S)-N-benzoyl-3′-phenylisoserine, also 
contains hydroxyl and benzoyl functional groups and is 
connected to the core at C13. Although the ester group 
at the C2 position has been altered, 2-debenzoyl-2-tigloyl 
PTX (Fig. 1b), the initial natural derivative of PTX, still 
displays tubulin binding activity [49]. The PTX molecule 
is made up of an amide tail and a tetracyclic core known 
as baccatin III (Fig. 1c). The core rings are referred to as 
rings A (a cyclohexene), B (a cyclooctane), C (a cyclohex-
ane), and D (an oxetane) in that order.

A derivative of taxane, called PTX-TTHA (PTX-trieth-
ylenetetramine hexaacetic acid conjugate), was created 
using PTX, triethylenetetramine hexaacetic acid, dimeth-
ylaminopyridine, and triethylamine. This semi-synthetic, 
water-soluble derivative showed improved PTX cosol-
vent toxicity, better water solubility, and efficacy against 
triple-negative breast cancer. PTX-TTHA caused cell 
apoptosis, decreased cell proliferation, and mediated 
TUNEL-positive apoptotic cells [51]. Additionally, doc-
etaxel (Taxotere®), a semi-synthetic alternative to PTX, 
was found to be highly practical and, in some cases, more 
effective than PTX. The FDA has approved Docetaxel as a 
medication (Fig. 1d) for head and neck cancer, advanced 
breast cancer, and metastatic hormone-refractory pros-
tate cancer (HRPC) treatment. Despite being significant 
drugs for treating various cancers, PTX and docetaxel are 
less effective due to drug resistance. Both drugs are vul-
nerable to multidrug resistance.

An increased expression in taxanes’ resistance is done 
by the multidrug resistance gene, which encodes the 
P-glycoprotein gene, mostly related to increased expres-
sion. Cabazitaxel (Fig.  1e) is superior to PTX and doc-
etaxel owing to methoxy groups’ presence at C7 and 
C10, which results in a lower affinity for P-gp. Due to its 
enhanced properties, this drug effectively treats tumors 
resistant to docetaxel [52]. If a patient with metastatic 
HRPC has previously used docetaxel–prednisone ther-
apy, it is recommended to use prednisone and cabazitaxel 
for treatment [52]. The clinical advantages of cabazi-
taxel’s unique capacity to cross the blood–brain barrier 
(BBB) have not yet been studied [53]. Cabazitaxel signifi-
cantly improved the cytotoxicity in docetaxel-sensitive 
cell lines, including lymphoblastic leukemia, promyelo-
cytic leukemia (HL60), cervical adenocarcinoma (KB), 
and breast cancer (Calc18). The drug also proved effec-
tive in cancer cell lines that had previously been resistant 
to docetaxel, such as document number 1/DOX, docu-
ment number 1/TXT, document number 1/VCR, HL60/
TAX, Calc18/TXT, and KBV1 [54]. The resistance factor 
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ratios of docetaxel were between 4.8 and 5.9, while those 
of capaztaxel ranged from 1.8 to 10.

A nanoparticle albumin-bound PTX, Abraxane 
(Fig. 1f ), is a unique PTX version that does not contain 
CrEL. The particles of PTX are stabilized by human albu-
min 130 nm in size, making it safe for intravenous admin-
istration without the possibility of capillary occlusion 
[55]. To prepare Abraxane, it can be mixed with normal 
saline in doses ranging between 2 and 10  mg/mL. This 
differs from CrEL-PTX, resulting in a smaller infusion 
volume and duration [56, 57]. Additionally, unlike CrEL-
PTX [58], Abraxane does not run the hazard of plasti-
cizer leakage from infusion bags and can, therefore, be 
produced in standard plastic IV infusion bags.

PTX can be conjugated with biodegradable polymer 
Poly(l-glutamic acid) a water-soluble, having carbox-
ylic acid side chains (Fig.  2a). The resulting conjugate 
is extremely water-soluble (> 20  mg/kg) and does not 
require CrEL for formulation. In chemotherapy-naive 
patients with advanced NSCLC, PG-PTX revealed 
equal effectiveness with less myelotoxicity but higher 

neurotoxicity than gemcitabine or vinorelbine [59]. 
When used as second-line therapy for NSCLC, PG-
PTX exhibited survival rates that were comparable to 
those of docetaxel while having higher rates of neuro-
toxicity and lower incidences of alopecia, neutropenia, 
and febrile neutropenia. Utilizing the identical isoserine 
C13-side chain as SB-T-1214, a library of 7, 10-modified 
PTX, cabazitaxel, and ortataxel analogs was published 
[60], several of these taxanes showed outstanding to 
good efficacy against various cancer cell lines. Numerous 
"abeo-taxanes" (Fig. 2b) have been produced by altering 
the C7- and C9-hydroxyl groups. These taxane skeletons 
are derived from baccatin III via skeletal rearrangement. 
These abeo-taxanes showed good potency when applied 
to cancer cell lines resistant to PTX, vinblastine, and dox-
orubicin [61].

A self-immolating disulfide linker was used to create 
biotin-taxoid (SB-T-1214) conjugates (Fig. 2c), including 
single-walled carbon nanotube (SWNT) nano-conjugates 
[62, 63]. These conjugates demonstrated remarkable effi-
ciency with far lower toxicity to normal human cells and 

Fig. 2  Chemical structure of poly(l-glutamic acid) paclitaxel (PG-paclitaxel) (A); conjugates abeotaxane (B); biotin-taxoid (SB-T-1214) (C)
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very good internalization of cancer cells via receptor-
mediated endocytosis.

Many PTX and docetaxel ferrocenyl derivatives have 
been designed by replacing the 3′-N-benzoyl group of 
PTX with a ferrocenoyl moiety, resulting in enhanced 
anti-proliferative property of the derivative as compared 
to the parent compound. To synthesize PTX derivatives 
(2), the reaction of optically pure (3R,4S)-3-triethylsily-
loxy-4-phenylazetidin-2-one (3) (shown in Fig.  4) and 
10-deacetyl baccatin III (1) with trimethylsilyl chloride in 
pyridine was employed which was followed by selective 

O-acetylation of 10-OH with LiHMDS and acetyl chlo-
ride in THF at − 40 °C for 30 min (Fig. 3).

Further, (3R,4S)-N-Ferrocenoyl-4-phenyl-3-triethylsi-
lyloxyazetidin-2-one (4) was synthesized by N-acylation 
reaction of (3) with ferrocenoyl chloride. The N-acyla-
tion of (3) with 4-ferrocene butyric acid using diisopro-
pyl carbodiimide functioning as a coupling agent with a 
catalytic amount of 4-dimethylamino pyridine in dichlo-
romethane at room temperature resulted in conversion 
to N-4-ferrocenyl butyryll-3-triethylsilyloxyazetidin-
2-one (5) (Fig. 4).

O
O

HO

HO O OH

H
O

O
O

O
O

HO

AcO O OTES

H
O

O
O

1 2

(i)

HO HO

Fig. 3  Synthesis of paclitaxel derivative (2) (reaction condition i) TESCl, pyridine, room temp., 5 min; (reaction condition 2) LiHMDS, CH3COCl, THF, 
− 40 °C, 30 min
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Fig. 4  Synthesis of N-ferrocenyl-substituted azetidin-2-ones (4) and (5). Reaction conditions: (i) FcCOCl (Fc = ferrocenyl), Et3N, DMAP, DCM, room 
temperature, 2 h; (ii) Fc(CH2)3COOH, DIC, DMAP, DCM, room temperature, 24 h
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Furthermore, under specific conditions with LiHMDS 
as a base at − 40  °C, 13-O-acylation of (4) (shown in 
Fig. 4) with azetidine-2-ones (6) and (3) (shown in Fig. 4) 
produced the corresponding PTXs (7) and (8) deriva-
tives, and deprotection of -OH groups using a greater 
quantity of HFpyridine produced (9) and (10) PTX ana-
logs (Fig. 5).

Substitution of ferrocenyl moiety linked to the PTX 
2′-OH group led to compounds with lower toxicity than 
that of the PTX. Anti-proliferative activity was decreased 
on substitution at the 7′-OH group compared to the par-
ent compound. The synthesized derivatives (16–19) and 
(25–26) possessed lower activity than the PTX parent 
compound (Figs. 6, 8).

For substitution at the 7′-OH position, (11) and (12) 
compounds were protected at the 2′-O-position as tert-
butyldimethylsilyl ethers with tert-butyldimethylsilyl 
chloride in the presence of imidazole in DMF at room 

temperature [64]. The compound synthesized (21) was 
selectively 7-O-acylated with 3-ferrocenoyl propionic 
acid or 4-ferrocenyric acid using DIC as a coupling 
agent at 0  °C resulting in corresponding products 22–
23 (Fig. 7).

The 7-O-acylated-2′-O-TBS-docetaxel derivatives 
(23) and (24), shown in Fig. 7, were produced by react-
ing 2′-O-TBS-docetaxel (22) (shown in Fig.  7) using 
5-ferrocenoylpentanoic and 6-ferrocenylhexanoic acids 
as acylating agents at 0 °C. Moreover, the deprotection 
of hydroxy groups was done using HF·Py, which led to 
the synthesis of the 7-O-ferrocenyl-substituted taxanes 
(25–26), respectively [65–68] (Fig. 8).

[69] prepared a water-soluble ester-linked gluco-
side derivative of PTX, in which diols anomers of allyl 
2,3,4-tri-O-benzyl-6-O-tritylglycoside were synthe-
sized, followed by their chromatographic separation 
(Fig. 9).
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Fig. 5  Synthesis of N-debenzoyl-N-ferrocenoylpaclitaxel derivatives, (9) and (10). (i) LiHMDS, THF, − 40 °C, 40 min; (ii) HF·Py, pyridine/MeCN, room 
temperature, 24 h
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Fig. 6  Synthesis of 2′-O-ferrocene-substituted paclitaxel 13–16 and docetaxel 17–20 derivatives. Reaction conditions: (i) FcR3COOH, DIC (1.5 equiv), 
DMAP (0.1 equiv), DCM, room temperature, 24 h
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7-glycolyl PTX 2′′-O-α-maltoside (Fig. 10a), an ester-
linked PTX-glycoside conjugate, has been synthesized 
by condensing 2′-TES PTX with α-glycosyloxy acetic 
acid and then deprotecting the hydroxy groups. A PTX 
dicarboxylic acid derivative was synthesized for specific 
binding to ubiquitous protein, serum albumin. In the 
synthesis, hexadecanol was oxidized to palmitaldehyde 
using PCC and then Wittig olefinated. The synthesized 

triester was decarboxylated and saponified employing 
KOH, resulting in an activated anhydride of 3-pentadecyl 
glutaric acid. The synthesized derivative showed higher 
cytotoxicity, high serum stability, and efficiency than 
PTX [70]. Li created NucA-PTX, a water-soluble PTX-
nucleolin-aptamer combination, to precisely deliver PTX 
to the ovarian cancer tumor spot. A more durable and 
inactive dipeptide bond sensitive to cathepsin B joins the 
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tumor-targeting nucleolin aptamer to the active hydroxyl 
group at the 2′-position of PTX [71].

Over the past 10 years, taxane liposomal formulations 
have undergone substantial research and development 
[72]. For instance, clinical studies employing the PTX-
loaded cationic liposome EndoTAG-1 and the PTX-
entrapped liposome LEP-ETU have shown promising 
results. New-generation taxoids carrying DHA at the 
C2′ position have been generated with the creation of 
DHA-PTX (Taxoprexin; Fig. 10b). Some of these taxoids 
showed promising activity against (Pgp +) DLD-1 human 
colon and (Pgp-) A121 human ovarian cancer xenografts 
in mice, as well as substantially less toxicity than the par-
ent taxoids in terms of systemic toxicity [73].

The creation of PTX prodrugs has considerably used 
the C2 position to boost water solubility and antican-
cer effectiveness. The effects of several PTX conjugates, 
including docosahexaenoic acid (DHA)-PTX ("Taxo-
prexin") and poly (l-glutamic acid) PG-PTX ("Opaxio"), 
are now being researched in humans [74]. In contrast 
to PTX and DHA-PTX ("Taxoprexin") and PTX, DHA-
SB-T-1214 had a significant antitumor impact on mouse 
xenografts of the DLD-1 human colon, H460 human 
non-small cell lung, CFPAC-1, and PANC-1 human pan-
creatic cancer [75].

Currently being evaluated in clinical settings are the 
PTX analogs larotaxel, milataxel, ortataxel, and tese-
taxel (Fig. 10c–f). Larotaxel is being evaluated in clinical 

studies for metastatic breast cancer, advanced NSCLC, 
urethral bladder cancer, and advanced pancreatic cancer 
[76–78]. Larotaxel plus cisplatin did not outperform cis-
platin/gemcitabine in a Phase III trial for locally advanced 
or metastatic bladder or urothelial tract cancer [79]. For 
NSCLC resistant to taxanes, recurrent glioblastoma, 
and metastatic breast cancer, Ortataxel is now undergo-
ing phase II research [80]. Tesetaxel has already finished 
Phase I and II trials in solid tumors [81, 82]. Milataxel 
was promising in a distinct study of individuals with 
platinum-refractory NSCLC [83]. However, it was unsuc-
cessful in a Phase II trial for advanced previously treated 
colorectal cancer. When given at a 60 mg/m2 dose, BMS-
184476 was well tolerated and effective against NSCLC in 
patients with previous therapy [84].

Mechanism of antitumor action of paclitaxel
Stabilization of the microtubule
Paclitaxel (PTX) primarily targets the microtubules 
(microtubule targeting agent; MTA), the cytoskeletal 
architecture of the cells, that play critical roles in cellu-
lar processes such as cell cycle progression and division, 
motility, and intracellular trafficking [33, 85, 86]. The net 
microtubule assembly rate equals the net disassembly 
rate during steady-state conditions, and the length of the 
microtubule is unchanged [33]. Microtubules are assem-
bled from α- and β-tubulin heterodimers in a head-to-tail 
pattern (rapidly growing ’+ve end’ at one side and slower 

Fig. 10  Chemical structure of 7-glycolypacilitaxel (A), DHA-paclitaxel (B), larotaxel (C), milataxel (D), ortataxel (E), tesetaxel (F)
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growing ’−ve end’ at the other) during the G2 phase and 
the prophase of mitosis and its disassembly (a process 
called dynamic instability) requires GTP hydrolysis [33, 
85]. PTX blocks depolymerization of the microtubule 
during cell cycle progression, specifically by binding to 
the N-terminus of the β-tubulin subunit, thereby stabi-
lizing the polymerized microtubule, causing cell cycle 
arrest at G2/M-phase, causing non-progression of the 
cell cycle and subsequently leading to apoptosis [86–89] 
[Fig. 11-(1)].

Interestingly, PTX stabilized microtubule formation 
in vitro and was resistant to low-temperature or calcium-
triggered depolymerization [34, 90]. PTX intervention 
caused mitotic arrest in cell cultures and animal tumor 
models [34]. The findings suggest that PTX-arrested 
cells in the metaphase and the cells maintain near-nor-
mal bipolar spindles [32]. Studies have also revealed that 
low PTX concentrations blocked the depolymerization 
of microtubules. In contrast, at higher concentrations, it 
increased the stability of microtubules and inhibited the 
separation of microtubule ’-ve’ ends from centrosomes 
[91–93]. The efficacy of PTX as an MTA is reduced when 
cells confer resistance to the drug through premature 
mitotic exit (mitotic slippage), thus evading the PTX-
induced cell cycle arrest and subsequent apoptosis [94].

Effect on the TLR4 pathway
Concentration and time-dependent anticancer and pro-
apoptotic effects of PTX, independent of its effect on 
microtubule depolymerization, have been reported. PTX 
modulates the transcription of several genes, directly 
or indirectly involved in cell proliferation, apoptosis, 
and inflammation via dysregulation of the TLR4 (toll-
like receptor 4) pathway, which in turn can be either via 
MyD88 (myeloid differentiation primary response pro-
tein 88) dependent and/or independent pathways [95]. In 
normal cells, the TLR4 pathway plays an integral role in 
cellular defense/survival mechanisms, pathogen recogni-
tion, and pattern recognition, activating innate immunity 
and eliciting immune responses [96–98]. Active TLR4 
signaling, initially identified in breast cancer cells, has 
been implicated in the chronic inflammation-mediated 
development of different cancers, cancer progression, 
chemotherapeutic resistance, cancer cell stemness, inva-
sion, metastasis, and disease relapse [95, 99–102]. The 
activation of TLR4 mediated MyD88-dependent path-
way subsequently activates several pro-oncogenic and 
anti-apoptotic signaling mechanisms in cancer cells 
that include the Raf1/MEPK/MAPK pathway (asso-
ciated with cell survival) and the IRAK/TRAF/NFκB 
pathway (associated with the synthesis and secretion of 
pro-inflammatory cytokines) [86, 98] [Fig.  11-(2)]. The 
MyD88-dependent pathway also activates the MAPK 

pathway in cancers that contribute to cancer cell prolif-
eration, resistance to programmed cell death, and synthe-
sis of pro-inflammatory cytokines (via AP-1 activation) 
[103, 104] [Fig. 11-(2)]. The TRIF (MyD88-independent) 
mediated mechanism of the TLR4 pathway results in the 
phosphorylation and activation of transcription factor 
IRF3, which then translocates to the nucleus and drives 
the expression of Type 1 interferons [98].

PTX intervention effectively blocks the MyD88-
dependent and independent cancer-promoting TLR4 
mechanisms and trigger apoptosis (via upregulation of 
pro-apoptotic BAX/BAK and downregulation of anti-
apoptotic Bcl-2), reduce chronic inflammation, and 
activate several immunomodulatory tumor combating 
effects of PTX (Figs. 11-(3) and 12) [33, 86].

However, PTX-mediated modulation of the TLR4 path-
way is implicated in the activation of NF-κB and MAPK-
related downstream signaling and subsequent release of 
pro-inflammatory molecules that enhance the progres-
sion of cancers and confer chemoresistance to drug inter-
vention in cancers [105, 106]. PTX at lower doses induces 
cytokines and pro-inflammatory proteins and apoptosis 
at higher doses. Hence, the dose-dependent effects of 
PTX in different cancers must be carefully addressed to 
maximize the anticancer efficacy of the drug [107].

Paclitaxel‑mediated activation of ER stress
Certain studies have implicated the PTX-mediated acti-
vation of the endoplasmic reticulum (ER) stress response 
or the unfolded protein response (UPR) via the PERK and 
IRE1α [Fig.  11-(4)], subsequent apoptotic cell death in 
different cancers [108, 109]. PTX chemotherapy triggers 
the activation of antitumour immunity through immuno-
genic cell death via TLR4 and enhances the expression of 
CALR mediated by CCL2 transcription and IκB kinase-2 
SNARE-dependent exocytosis resulting in activation of 
NF-κB signaling pathway [108]. Combinational therapy 
of apatinib and PTX induces ER stress, autophagy and 
apoptosis in ECA-109 and KYSE-150 esophageal squa-
mous cancer cells (ESCC). Further, combination of apat-
inib and chloroquine enhances the sensitivity in ESCC 
which in turn triggers PTX for apoptosis through IRE-
1α-AKT-mTOR signaling pathway [109]. In conclusion, 
PTX in combination with other drugs mediates the ER 
stress response via PERK, IRE1α and NF-κB signaling 
pathway resulting in apoptosis and immunogenic cell 
death of tumor cells.

Other anticancer effects of paclitaxel
Several studies have reported the solid angiogenic inhibi-
tory activity of PTX at low doses by modulating VEGF 
expression and the VEGF signaling pathway by down-
regulating VEGFR2 [33, 110]. One of the mechanisms of 
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Fig. 11  Mechanism of anticancer action of Paclitaxel (PTX): PTX intervention leads to (1) stabilization of microtubule, cell arrest, and subsequent 
apoptosis, (2) inhibition of the TLR4 signaling pathway, (3) increase in the immunomodulatory effects of the drug and (4) activates ER 
stress-mediated cell death in different cancers. BAK: Bcl-2 homologous antagonist/killer; BAX: Bcl-2 associated X protein; Bcl-2: B cell lymphoma 2; 
Cyt C: cytochrome C; eIF2α: eukaryoic translation initiation factor 2 alpha; ER: endoplasmic reticulum; IRAK: interleukin 1 receptor-associated kinase; 
MAPK: mitogen-activated protein kinase; MEK: MAPK/extracellular signal-regulated (ERK) kinase; MyD88: myeloid differentiation primary response 
protein 88; NFκB: nuclear factor light chain enhancer of kappa; PERK: PRKR-like endoplasmic reticulum kinase; PTX: paclitaxel; TLR4: toll-like receptor 
4; TRAF: tumor necrosis factor (TNF) receptor-associated factor; TRIF: TIR domain-containing adaptor protein. Created with Biorender.com
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action of PTX involves tumor cell death via the genera-
tion of reactive oxygen species (ROS) [86]. The combina-
tional therapy of PTX with glucose inhibitors, such as 
2-deoxy D-glucose and hydro peroxide (L-buthionine-S, 
R-sulfoximine), selectively increased hydrogen peroxide 
mediated breast cancer cell death [111].

There are many challenges in understanding the 
detailed and precise action of PTX and the specific rele-
vant concentration for using PTX in cell culture. A proba-
ble reason could be varying usable concentrations of PTX 
in diverse cancer types and chemotherapy-associated 

interventions. The changing PTX levels in plasma and 
excess PTX accumulation in cell lines reflect greater 
concentration in cells than in plasma; hence, it is not 
easy to measure its effective concentration [32]. Instinc-
tively, how PTX interferes specifically at interphase with-
out affecting prior mitosis is still unclear. Some authors 
hypothesized that PTX might have interfered with cell 
signaling and microtubule-mediated transport. The 
microenvironment of cell culture has a profound effect 
on PTX antitumor activity, e.g., in the context of drug 
testing, clinically relevant amounts of PTX do not cause 

Fig. 12  Antiangiogenic and immunomodulatory effects of Paclitaxel (PTX): PTX exerts its anticancer activity via its antiangiogenic 
and immunomodulatory effects. CTL: cytotoxic T-lymphocyte; DC: dendritic cells; M1: M1 macrophages; MDSC: myeloid-derived suppressor cells; 
NK1: natural killer type 1 cells; Th1: Type 1 T-helper cells; Treg: regulatory T cells; VEGFR2: vascular endothelial growth factor receptor 2. Adapted 
and modified from Kampan et al., 2015 [33]. Created with Biorender.com
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death in cells at interphase and have not gone through 
mitosis [112].

Scientific studies on the antitumor effect of PTX
Non-small-cell lung cancer (NSCLC) is one of the most 
common cancers in the USA, accounting for 85% of lung 
cancer cases. In 1999, PTX was recognized as an FDA-
approved drug for NSCLC. Mohiuddin et  al. examined 
the underlying mechanisms of PTX’s inhibitory effect on 
gefitinib-resistant NSCLC cells (PC9-MET). The results 
demonstrate that PTX significantly reduced the PC9-
MET cell viability and apoptosis induction. The apop-
totic impact was also accompanied by enhanced cleaved 
caspase-3, 9, and PARP levels. PTX augmented oxida-
tive stress by enhancing ROS production, which in turn 
caused DNA damage in tumor cells. PTX eliminated cel-
lular senescence related to the inactivation of p53/p21 
and p16/pRb signaling pathways. The authors concluded 
that PTX is a hopeful antitumor drug offering a new 
therapeutic approach for managing gefitinib-resistant 
NSCLC during the COVID-19 pandemic [113].

In another study, using a time-dependent approach, 
PTX nanoparticles loaded with polylactic-co-glycolic 
acid were employed to observe their antitumor effect 
on NSCLC cells in vitro. The authors demonstrated that 
PTX nanoparticles inhibited A549 and H1650 cell activ-
ity. Although the inhibitory activity was less at 12 and 
24  h with the progression of time, a potent inhibition 
occurred at 48 and 72  h. The nanoparticles were more 
effective in triggering apoptosis, blocking invasion, and 
migrating NSCLC cells than normal PTX. The sustained 
release with more efficient cellular uptake made PTX 
nanoparticles a hope as a promising drug carrier in lung 
carcinoma [114].

The PTX chemotherapy is extensively implemented 
to manage several tumors listed as breast, ovarian, and 
NSCLC. Nowadays, combinational therapy has been 
effective, overcoming many challenges associated with 
single-drug chemotherapy. Kim et  al. [115] employed a 
combinational approach to study the antitumor activity 
of PTX with sorafenib and radiation in vitro and in vivo 
in anaplastic thyroid cancer (ATC) cells. The authors 
concluded that a combination of synergistically in  vitro 
lowered the cell viability of tumor cells and increased cell 
apoptosis. The xenograft model reported a significant 
decline in tumor volume and enhanced survival rate, rep-
resenting it as a potential therapy in preclinical models.

Another combinational therapy by Khing et al. [116], in 
which PTX was given in adjunction with fluoxetine, was 
evaluated for antitumor activity in gastric adenocarci-
noma cells. The combination resulted in the G2/M-phase 
arrest and triggered early and late cell death plus necrop-
tosis in a time and dose-dependent fashion.

[117] studied the caffeic acid and PTX (in combination) 
effect on NSCLC cells both in vivo and in vitro. Co-treat-
ment showed that caffeic acid enhanced the cytotoxicity 
of PTX in H1299 cells at low concentrations but not in 
Beas-2b cells.

The cells H1299 were arrested at the sub-G1 phase and 
triggered caspase-3, 9 followed by apoptosis. Caffeic acid 
improved the phosphorylation of c-Jun NH2-terminal 
protein kinase1/2, Bax, and Bid, and their activation. 
Additionally, in vivo, study reported that PTX and caffeic 
acid suppressed the tumor growth in the H1299 xeno-
graft model without any adverse effects.

The synergistic influence of silibinin and PTX on 
ovarian cancer has been investigated by [118] in ovar-
ian carcinoma cell lines SKOV-3. Results revealed a 
considerable slowing of the SKOV-3 cells’ development 
followed by induction of apoptosis. Tumor suppressor 
genes p53 and p21 upregulation is reported along with a 
crosswalk between PTX, silibinin, and cancer via compu-
tational analysis.

In human prostate cancer, a combination of PTX and 
noscapine was analyzed for antitumor properties in vitro. 
The tumor cells’ viability declined, improved apopto-
sis, decreased expression of Bcl-2, and increased Bax 
and Bcl/Bax ratio LNCaP and PC-3 cells. The expres-
sion of androgen receptor and prostate-specific anti-
gens declined in LNCaP cell lines [119]. Han et al. [120] 
reported that a combination of PTX and ruxolitinib syn-
ergistically enhanced the antitumor property of an anti-
neoplastic agent and suppressed tumor growth in the 
human ovarian mouse model. However, a recent study on 
ovarian cancer cell lines MES synergistically demonstrat-
ing the effect of low-dose PTX with Asparagus officinalis 
revealed that the combination of congested cell prolifera-
tion and cell invasion triggered apoptosis. The mecha-
nism of action was DNA-dependent damage, suppression 
of microtubule dynamics and associated proteins, and 
AKT/mTOR pathway interference [121]. Trastuzumab, a 
humanized anti-human epidermal growth factor receptor 
2 antibody drug, when given in combination with PTX 
enhanced the antitumor efficacy of trastuzumab-resistant 
in resistant and sensitive xenografted tumors. The com-
bination resulted AKT–p27kip1–retinoblastoma protein 
pathway and apoptosis [122].

Researchers have also prepared nano-formulations of 
PTX to enhance the drug’s bioavailability, specificity, and 
antitumor activity in different types of cancers. Huang 
et  al. [123] encapsulated PTX with PEG-PLA/TPGS 
and found the PTX-micelles to improve the anticancer 
property of PTX in A549 non-small lung cancer cells. 
The xenograft model studies on nude mice revealed that 
PTX micelles could block tumor growth more efficiently 
than other formulations. Leiva et  al. [124] formulated 
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PTX nanoparticles with glyceryl tripalmitate (tripal-
mitin), including adjustments by adding hexa (ethylene 
glycol), β-cyclodextrin, and macelignan. All the nano-
formulations reported excellent hemocompatibility and 
improved antitumor activity in breast and lung cancer 
cells. Tripalm-NPs-PC declined IC50 by 40.5 and 38.8-
fold in breast and lung cancer, respectively. Moreover, 
the exact formulation reduced the breast volume and 
lung multicellular tumors. The authors concluded that 
Tripalm-NPs-PC enhanced the antitumor property and is 
an alternative and practical PTX delivery system in lung 
and breast cancer.

Traditional medicine versus standard clinical 
practice: current medical applications
The discovery of PTX was a significant breakthrough in 
cancer treatment. Today, PTX is commonly used as a 
chemotherapy drug and is available in various formula-
tions for different administration routes, including intra-
venous and oral administration. PTX has played a vital 
role in cancer treatment and has significantly improved 
patient outcomes in several cancer types (Table  1 and 

Fig. 13). It is the principal taxane-derived antineoplastic 
drug used in the cancer treatment [125]. The PTX detec-
tion involved screening 35,000 medicinal plants by U.S. 
National Cancer Institute (1958) for cytotoxic efficacy. 
Later, in 1971, it was extracted from the Taxus brevifolia 
bark [126]. PTX is regarded as a gold standard chemo-
therapeutic drug for healing different cancer types, such 
as ovarian, breast, urothelial, head and neck, Kaposi’s 
sarcoma, and non-small cell lung carcinoma [127, 128]. 
To enhance its therapeutic efficacy and overcome limita-
tions, novel drug formulations incorporating PTX, such 
as polymeric micelle nanoparticles, have been devel-
oped and applied in anticancer curing regimes. PTX also 
exhibits radiation-sensitizing effects.

The discovery of PTX from plant screening led to 
its inclusion in clinical trials, and it became the only 
plant-derived drug to be enlisted in such trials [129]. A 
unique mechanism of PTX action, targeting microtu-
bule assembly, was discovered in 1979 and approved by 
the Food and Drug Administration in 1992 and 1994 for 
ovarian and breast cancer [129]. At the moment, PTX is 
used individually or in combination with supplementary 

Table 1  Medical applications of paclitaxel for curing many diseases

Plant species Preparation/extraction 
form

Mode of administration Diseases cured Country References

Taxus brevifolia Paclitaxel In vivo Ovarian cancer USA [131]

Taxus brevifolia Paclitaxel In vivo Breast cancer USA [132]

Taxus brevifolia Paclitaxel In vivo Lung cancer USA [133]

Taxus brevifolia Paclitaxel In vivo Kaposi’s sarcoma USA [134]

Nab-paclitaxel

Transcytosis, receptor 
mediated transport

Micelles 
nanoparticles

Paclitaxel

Combination 
therapy

Ovarian Cancer

Kaposi Sarcoma

Lung Cancer

Neck Cancer

Fig. 13  Paclitaxel vital role in several cancer types
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medications to treat breast, ovarian, and non-small cell 
lung cancer [129, 130].

PTX is a potent anticancer drug frequently utilized 
in ovarian cancer prevention, both in adjuvant and 
advanced settings, often administered in combination 
with additional chemotherapy drugs like carboplatin and 
doxorubicin or cyclophosphamide. The usage of PTX in 
ovarian cancer treatment has been well-established and 
is supported by several clinical trials and guidelines [131]. 
PTX-based regimens have been extensively studied and 
recommended as a standard option for the prevention 
of breast as well as metastatic cell lung cancer [132]. It 
is often administered in amalgamation with platinum-
based chemotherapy drugs like cisplatin or carboplatin. 
PTX-based regimens were evaluated in clinical trials and 
are commonly recommended for the management of the 
NSCLC [133]. PTX has demonstrated activity against 
Kaposi sarcoma, a type of cancer often occurring in peo-
ple with debilitated immune systems, like HIV/AIDS. It 
can also be used alone or with other medications to treat 
Kaposi sarcomas [134].

As a chemotherapeutic agent, it can be practiced to 
cure various cancers like breast, ovarian, lung, pancre-
atic, and solid tumors. While PTX is an effective chemo-
therapeutic agent, it can cause several adverse effects, 
including decreased red blood cells, white blood cells, 
and platelets (bone marrow suppression), peripheral neu-
ropathy, myalgia (muscle pain), arthralgia (joint pain), 
gastrointestinal disturbances, and hair loss [135].

PTX derived from endophytes of different plant 
species for improved production
The challenges associated with sluggish plant growth 
(Taxus) and the limited PTX yield have prompted 
the search for alternative strategies for PTX produc-
tion. Over the past 40  years, various biotechnological 
approaches have been developed to address these chal-
lenges. These approaches include field cultivation, chemi-
cal synthesis, cell suspension, callus, hairy root, and 
tissue culture [136–138]. While these biotechnological 
methods have shown promise, they have not been widely 
adopted for large-scale PTX production due to several 
limitations. These limitations include massive reaction 
steps, lengthy incubation times, and low yields, which 
make these methods impractical for meeting the increas-
ing demand for PTX. Researchers have been working to 
overcome these limitations and develop more efficient 
and scalable strategies for PTX production [139–141].

In recent years, endophytes have gained the atten-
tion of researchers for their potential in PTX produc-
tion. Endophytes can be sequestered from various 
host plant species belonging to different families. They 
are in diverse ecological and geographical conditions, 

indicating their adaptability to various environments. 
Endophytes possess the genetic machinery necessary for 
PTX biosynthesis and modulate the gene expression in 
secondary metabolite biosynthesis pathways. Endophytes 
can potentially overcome the limitations associated with 
traditional methods of PTX production, such as low 
yields and long incubation times. However, the explora-
tion of endophytes for PTX production is still in its early 
stage, and vital research efforts are required to harness 
their potential fully [142].

Researchers have discovered over 35 species of endo-
phytic fungi proficient in producing PTX. Some of these 
species include Glomerella cingulata, Pestalotiopsis ter-
minaliae, Fusarium oxysporum, Nigrospora sphaerica, 
Lasiodiplodia theobromae, Colletotrichum gloesporioides, 
Phyllosticta tabernaemontanae, Pestalotiopsis micros-
pora, Chaetomella raphigera, Alternaria alternata, and 
Cladosporium oxysporum [143, 144]. PTX can also be 
created by endophytes connected to a variety of other 
plant groups in addition to those belonging to the Taxa-
ceae family, which are known for producing the drug, 
such as Rubiaceae, Rutaceae, Rhizophoraceae, Solan-
aceae, Sapindaceae, Plantaginaceae, Podocarpaceae, 
Pinaceae, Malvaceae, Magnoliaceae, Moraceae, Lami-
aceae, Ginkgoaceae, Combretaceae, Cupressaceae, Acan-
thaceae and Araucariaceae [144].

Several species of Aspergillus, including A. terreus, A. 
fumigatus, A. niger, A. aculeatinus and A. oryzae, have 
been specified as PTX producers. Notably, A. fumigatus 
is confirmed as a high PTX-producing species on the S7 
medium. Other PTX-producing fungi includes Beau-
veria sp., Mycelia sterilia, Epicoccum sp., Fusarium sp., 
Stemphylium sedicola, Alternaria sp., Cladosporium sp. 
and Paraconiothyrium variabile. These fungi have been 
sequestered from diverse host plants and demonstrated 
PTX production under specific culture conditions [145] 
(Table 2).

To test the activity, studies by [146, 147] suggest that 
low concentrations of PTX derived from endophytic 
fungi can effectively inhibit cell proliferation during 
mitosis by stabilizing the spindle fibers. It promotes cell 
death in various cancer cell lines, encompassing lung 
(HL251), breast (MCF-7, BT220), intestine (Int4070), 
colon (H116), and leukemia (HLK210) [148] (Table 3).

Rajendran et  al. [149] extracted endophytic fungi 
(Pestalotiopsis microspore) from Plectranthus amboini-
cus, producing a better yield of PTX, which showed 
cytotoxic activity against the Hep G2 cell line. The 
PTX effects (Pestalotiopsis pauciseta) on the growth 
of MCF-7 breast cancer cells were examined by [150]. 
They observed that PTX exhibited a higher cytotoxic 
effect on MCF-7 cells. Ismaiel et al. [151] identified A. 
tenuissima and A. fumigatus isolated from Terminalia 
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Table 2  Paclitaxel isolated from endophytes of different host plant species

Plant Species Plant parts Extraction 
solvents

Methods of 
detection

Endophytic fungi Country References

Taxus chinensis var. 
mairei

Twig, old inner bark Methylene chloride LCMS, HPLC, CIEIA Didymostilbe sp. China [160]

Taxus chinensis var. 
mairei

Bark Dichloromethane ESI–MS, HPLC Aspergillus acu-
leatinus

China [145]

Taxus baccata L Wood LC–MS, HPLC, EIA Alternaria sp. Italy [161]

Taxus baccata L Twigs Dichloromethane HPLC, LC–MS/MS Paraconiothyrium 
variabile

U.K [162]

Taxus baccata L Yeast extract Yeast extract HPLC Cladosporium sp. Iran [163]

Taxus baccata L. 
subsp. Wallichiana 
(Zucc.)

Bark Methanol HPLC–MS Fusarium redolens India [164]

Taxus brevifolia Nutt Inner bark Dichloromethane HPLC, MS, TLC Taxomyces 
andreanae

Northern Montana [165]

Taxus celebica 
(Warb.) H.L. Li

Stem Methylene chloride LC–ESI–MS, TLC, 
HPLC

Fusarium solani UK [166]

Taxus chinensis Roxb Bark Ethyl acetate LC–MS, ESI–MS, 
HPLC

Metarhizium 
anisopliae

China [167]

Taxus chinensis Roxb Bark Ethyl acetate HPLC Fusarium solani China [168]

Taxus chinensis Roxb Bark Dichloromethane LC–MS, ELISA Mucor rouxianus 
DA10

China [169]

Taxus cuspidate Sieb. 
& Zucc

Leaves Dichloromethane LC–MS, NMR HPLC, 
UV, IR

Phomopsis sp. South Korea [170]

Taxus cuspidate Sieb. 
& Zucc

Inner bark Ethyl acetate, 
Methanol

LC–MS Aspergillus niger China [171]

Taxus cuspidate Sieb. 
& Zucc

Inner bark Chloroform/metha‑
nol

TLC, NMR, RP-HPLC Fusarium 
arthrosporioides

Korea [172]

Taxus mairei (Lemée 
& H.Lév.)

Bark Diethyl sulfate Chlo‑
roform, methanol

MS, CIEIA, HPLC Fusarium maire China [173]

Taxus mairei (Lemée 
& H.Lév.)

Inner bark Chloroform/metha‑
nol

MS, HPLC, UV, TLC Tubercularia sp. China [174]

Taxus × media 
Rehder

Bark, needles Ethyl acetate HPLC–MS Guignardia man-
giferae

China [175]

Taxus × media 
Rehder

Inner bark Chloroform, 
methanol

NMR, HPLC Cladosporium 
cladosporioides

Canada [176]

Taxus × media 
Rehder

Bark Chloroform/metha‑
nol

LC–MS Aspergillus terreus Canada [177]

Taxus wallichiana 
Zucc

Inner bark Methylene chloride NMR, MS Pestalotiopsis 
microspora

India [178]

Taxus wallichiana 
Zucc

Stem Methylene chloride LC–MS, TLC Sporormia minima Nepal [179]

Aegle marmelos Cor‑
rea ex Roxb

Leaves Methylene chloride HPLC, TLC, UV Bartalinia robil-
lardoides

India [180]

Taxus wallichiana 
var. mairei

Bark Chloroform, 
methanol

ESI–MS/MS, HPLC Phoma medicaginis China [181]

Calotropis gigantea 
(L.) R. Br

Leaves Dichloromethane HPLC, FTIR Phoma sp. India [182]

Capsicum annuum L Fruit Dichloromethane HPLC Colletotrichum 
capsici

[170]

Cardiospermum 
halicacabum L

Leaves Methylene chloride HPLC Pestalotiopsis 
pauciseta

[180]

Citrus medica L Leaves Dichloromethane HPLC, NMR Phyllosticta citri-
carpa

India [146]

Corchorus olitorius L Leaf, flower, seed, 
stem, root

Ethyl acetate FTIR, LC–ESI MS/MS, 
TLC, HPLC

Grammothele 
lineata

Bangladesh [183]

Cupressus sp. Needles Dichloromethane UV, IR, TLC, HPLC Phyllosticta spi-
narum

India [146]
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Table 2  (continued)

Plant Species Plant parts Extraction 
solvents

Methods of 
detection

Endophytic fungi Country References

Ginkgo biloba L Leaves Dichloromethane UV, IR, HPLC, Phomopsis sp. South Korea [170]

Hibiscus rosasin-
ensis L

Leaves Dichloromethane HPLC Phyllosticta 
dioscoreae

India [184]

Justicia gendarussa 
Burm. f

Leaves Methylene chloride HPLC Colletotrichum 
gloeosporioides

India [185]

Larix leptolepis L Leaves Dichloromethane HPLC, LC–MS, NMR, 
UV, IR

Phomopsis sp. South Korea [170]

Michelia cham-
paca L

Needles Dichloromethane HPLC, UV Chaetomium sp. India [186]

Moringa oleifera 
Lam

Leaves Dichloromethane LC–MS, IR, NMR, UV, 
HPLC

Cladosporium 
oxysporum

India [152]

Morinda citrifolia L Leaves Dichloromethane HPLC, NMR, UV, IR, 
FAB-MS

Lasiodiplodia theo-
bromae

India [148]

Plantago major L Leaves Ethyl acetate 
extract

LC–MS, UV Nigrospora spha-
erica

India [187]

Colletotrichum 
gloesporioides

Alternaria alternata

Glomerella cingulate

Salacia oblonga Wall Bark Genomic mining Armilaria sp. India [188]

Phoma sp.

Fusarium sp.

Alternaria spp. Pho 
Coriolopsis

caperata., mopsis sp.

Lasiodiplodia theo-
bromae

Trichoderma longi-
brachiatum

Botryosphaeria 
rhodina Aspergillus 
terreus

Rhizophora anna-
malayana

Leaves Ethyl acetate TLC, IR, HPLC Fusarium oxysporum India [189]

Plectranthus 
Amboinicus (Lour.)

Leaves Dichloromethane TLC, UV Pestalotiopsis 
microspora

India [149]

Tarenna asiatica (L.) Leaves Dichloromethane LC–MS, FTIR, UV–Vis, 
TLC

Aspergillus oryzae India [154]

Taxodium distichum 
(L.)

Bark Dichloromethane HPLC, TLC, UV Aspergillus fumiga-
tus

Egypt [151]

Terminalia arjuna 
(Roxb. ex DC.)

Bark Dichloromethane HPLC, TLC, UV Alternaria tenuis-
sima

Egypt [151]

Terminalia arjuna 
(Roxb. ex DC.)

Needles Ethyl acetate FTIR, LC–ESI–MS, 
HPLC, UV

Alternaria bras-
sicicola

India [190]

Terminalia arjuna 
(Roxb. ex DC.)

Leaves Methylene chloride FAB-MS, NMR, UV, IR Chaetomella 
raphigera

India [17, 191]

Terminalia arjuna 
(Roxb. ex DC.)

Leaves Methylene chloride UV, TLC, HPLC Pestalotiopsis termi-
naliae

India (Venkatraman Gan‑
gadevi & Johnpaul 
Muthumary, 2009b)

Wrightia tinctoria 
(Roxb.)

Leaves Dichloromethane HPLC Phyllosticta taber-
naemontanae

India [146]

Torreya grandifolia 
Raf

Inner bark Methylene chloride UV, TLC, EIA Periconia sp. China [192]
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arjuna and Taxodium distichum as producers of PTX. 
Various human cancer cell lines (HepG-2, A-549, MCF-
7, CHO-K1, and HEp-2) were subjected to the MTT 
assay, and this fungus-derived PTX demonstrated 
robust action against them. Raj et  al. [152] demon-
strated that Cladosporium oxysporum-derived PTX 
inhibited HCT-15 cell growth at higher concentrations. 
They hypothesized that this fungus might serve as a dif-
ferent source of PTX.

[153] isolated the PTX (Fusarium solani) from T. cel-
ebica. They observed that PTX-induced induced DNA 
fragmentation, caspase-10 activation, apoptosis, and 
mitochondrial membrane potential loss. Suresh et  al. 
[154] treated NCI-H460 cells with fungal-derived PTX 
from A. oryzae. The treatment resulted in alterations in 
cell structure, with the cells becoming sphere-shaped. 
Fungal PTX displayed significant in  vitro cytotoxic 
activity, inducing apoptosis. It is important to remem-
ber that this research may utilize different techniques, 
cell lines, and particular doses. However, taken as a 
whole, they show that PTX can kill different cancer cell 
lines. Matrix metalloproteinase 9 (MMP9) activity is 
decreased by PTX treatment, which is identified to play 
a crucial control over the tumor microenvironment 
and the development of cancer [155]. Inhibiting MMP9 
activity can help to impede cancer progression.

Fungal-derived PTX also prompts the initiation of 
cytotoxic activity in mice [156]. The effects of PTX on 
Sprague Dawley rat breast tissue generated from Bot-
ryodiplodia theobromae were discovered by [157]. They 
noticed that the levels of antioxidants such as catalase 
(CAT), glutathione peroxidases (GPx), and superox-
ide dismutase (SOD) were raised by PTX. PTX also 
increased the levels of non-enzymatic antioxidants like 
glutathione (GSH), vitamin C, and vitamin E. Superox-
ide dismutase (SOD) is a tumor suppressor protein as 
well as an intracellular enzyme that guards cells from 
oxidative damage and breaks down superoxide radicals 
into hydrogen peroxide [158]. By increasing the lev-
els of antioxidants (CAT, SOD, and GPx), fungal PTX 
helps to block ROS and their cell-induced effects [159]. 
In Sprague Dawley rats, COX-2 (cyclooxygenase-2) 
is recognized for stimulating cancer cell growth. PTX 
considerably declines the COX-2 expression [157]. By 
reducing COX-2 levels, fungal PTX may hinder cancer 
cell growth and enhance the cancer cell’s susceptibility 
to undergo programmed cell death. These findings sug-
gest that fungal-derived PTX exhibits various beneficial 
effects, including inhibition of MMP9 activity, induc-
tion of caspase 3-mediated cytotoxicity, modulation of 
antioxidant levels, and suppression of COX-2 expres-
sion. These effects collectively contribute to the poten-
tial anticancer properties of fungal PTX.

Conclusion
This article aims to give an overview of the molecular 
and pharmacological aspects of PTX’s ability to fight 
cancer. PTX (marketed as Taxol®) is a tetracyclic dit-
erpenoid that was initially discovered in the bark of 
Taxus brevifolia, a Pacific yew tree. It is the first tax-
ane to undergo clinical trials and is an active chemo-
therapy drug against a wide range of cancers, typically 
resistant to conventional treatments. The US FDA 
in 1992 approved it for ovarian cancer treatment and 
advanced and early-stage breast cancer treatments in 
1994 and 1999, respectively. PTX is administered as a 
second-line drug in monotherapy when combination 
chemotherapy fails to treat breast cancer or the dis-
ease recurs within 6 months of adjuvant chemotherapy. 
Based on published preclinical data, PTX affects vari-
ous pathways, causing an overall clinical activity that is 
not solely dependent on its direct cytotoxic effects on 
cancer cells. As a result, PTX (including its new formu-
lations) may provide unique and rational therapeutic 
approaches to managing tumor progression in patients.
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