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Abstract 

Using the particular nature of melanoma mutanomes to develop medicines that activate the immune system 
against specific mutations is a game changer in immunotherapy individualisation. It offers a viable solution 
to the recent rise in resistance to accessible immunotherapy alternatives, with some patients demonstrating innate 
resistance to these drugs despite past sensitisation to these agents. However, various obstacles stand in the way 
of this method, most notably the practicality of sequencing each patient’s mutanome, selecting immunotherapy 
targets, and manufacturing specific medications on a large scale. With the robustness and advancement in research 
techniques, artificial intelligence (AI) is a potential tool that can help refine the mutanome-based immunotherapy 
for melanoma. Mutanome-based techniques are being employed in the development of immune-stimulating 
vaccines, improving current options such as adoptive cell treatment, and simplifying immunotherapy responses. 
Although the use of AI in these approaches is limited by data paucity, cost implications, flaws in AI inference capabili-
ties, and the incapacity of AI to apply data to a broad population, its potential for improving immunotherapy is lim-
itless. Thus, in-depth research on how AI might help the individualisation of immunotherapy utilising knowledge 
of mutanomes is critical, and this should be at the forefront of melanoma management.
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Introduction
Melanoma is a rare type of skin tumour, accounting for 
1.1% of cancer deaths per year [1]. The annual incidence 
of melanoma has rapidly increased worldwide [2]. How-
ever, there has been a reduction in the mortality rate due 
to advancements in immunotherapy [3]. There are sig-
nificant regional melanoma variations around the world 
that are attributed to racial skin phenotypes and sun 
exposure [4], which is the most implicated cause of mela-
noma globally [5]. Moreover, melanoma occurs mainly in 
young and middle-aged people, with an increasing inci-
dence after age 25 and decreasing after 50, particularly in 
females [6].

The pathophysiology of melanoma involves mutations 
in genes regulating proteins, tight junctions, the cell 
cycle, deoxyribonucleic acid (DNA) damage, and remod-
elling of chromatin related to the melanocytes [5]. BRAF 
and NRAS are the most implicated genes, contributing 
54.4% and 30.7% due to mutations at the V600 codon 
and Q61 codon, respectively [5]. Various treatment 
approaches have been developed in the management of 
melanoma, and these approaches have been continually 
refined, with new modalities added to better streamline 
the available options and increase survival rates. Avail-
able treatment options include surgical excision, chemo-
therapy, targeted therapy using BRAF, NRAS, and C-Kit 
inhibitors, radiation, and immunotherapy [1].

With the advent of immunotherapy, the median sur-
vival rate of advanced melanoma has improved from 
9 months to 6 years [7]. Due to the variability in muta-
tions in melanoma, knowledge of the status of individual 
mutations can help in patient stratification and aid tar-
geted immunotherapy. In recent times, understanding 
individual mutations known as mutanomes has gained 
traction as a potential means for managing advanced 
cancers refractory to known therapies [8]. Advancement 
in artificial intelligence (AI) has sparked the debate that 
rapid sequencing of the mutanome and streamlining 
therapy options that trigger the immune system to target 
individual mutations will significantly improve therapy 
outcomes [9]. Particularly in melanoma, where adoptive 
cell therapy is proving to be a promising option for muta-
tion-targeted immunotherapy, interest in artificial intel-
ligence for refining this approach is increasing. One of 
the main reasons why AI is becoming more prominent in 
refining available immunotherapy options for melanoma 
is the increasing rate of reported resistance and refraction 
experienced by patients [10]. It is becoming apparent that 
finding approaches that utilise the differences in individ-
ual mutations and targeting these mutations on a person-
alised basis will help reduce the rate at which treatment 
failure occurs. However, due to the heterogeneity of mel-
anoma, developing vaccines or personalising therapy for 

each patient is a tedious and expensive endeavour. Thus, 
this review seeks to highlight the applicability of AI in 
refining melanoma immunotherapy through exploring 
the differences in individual mutations.

Methodology
This narrative review systematically investigates the 
potential applications of artificial intelligence in advanc-
ing research on mutanome-based individualisation of 
immunotherapy for melanoma management. Employ-
ing a rigorous methodology, the review encompasses a 
diverse range of study designs, including observational, 
case–control, cohort, and randomised controlled trials, 
with consideration for both paediatric and adult popu-
lations. The inclusion criteria, meticulously formulated, 
strictly adhere to English-language publications, span-
ning the period from 2001 to 2023 to align with contem-
porary practices.

To ensure a thorough exploration of the subject mat-
ter, the literature search utilised reputable databases such 
as ScienceDirect and PubMed. A thoughtfully selected 
set of search terms, including “mutanome”, “melanoma”, 
“immunotherapy”, and “artificial intelligence”, tailored 
the search to the specific focus of interest. Additionally, 
a manual search enriched the review by identifying ref-
erences related to recently published, disease-specific 
reviews. Notably, stand-alone abstracts and unpublished 
studies were deliberately excluded.

Through this comprehensive and meticulous approach, 
the review aims to provide a scholarly assessment of the 
integration of AI technology in refining current research 
on mutanome-based individualisation of immunotherapy 
for melanoma management. The employed methodology 
is summarised in Table 1 for clarity and reference.

Melanoma
Aetiology of malignant melanoma
Melanoma is caused by multifactorial interactions 
between the body and the environment [11]. Melanoma 
is mainly derived from the accumulation of several muta-
tions in melanocyte genes. NRAS, BRAF, and PTEN are 
some of the most significant genes in the development of 
melanoma [12–15, 17, 17]. There are also various genes 
for which mutations can be inherited, resulting in heredi-
tary melanoma, such as CDKN2A, CDK4, TP53, BRCA1, 
BRCA2, and PTEN [18].

Environmental factors such as exposure to ultravio-
let rays, which is considered the leading risk factor for 
melanoma [19] can disrupt melanocytes either directly 
by causing oxidative stress [20, 21] or indirectly by caus-
ing several mutations that induce carcinogenesis [22, 23]. 
Moreover, the risk of developing melanoma rises sub-
stantially with overexposure to sun and ultraviolet (UV) 
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rays in addition to recurring sunburns, particularly in 
younger age groups [24, 25]. It is also influenced by the 
skin phototype, as among the six skin phototypes, those 
with fair skin, blue eyes, and blond or red hair (Photo-
types I and II) are the most vulnerable to developing skin 
melanoma due to their high sensitivity to UVB rays [26].

Another environmental factor is the geographical 
location, as melanoma incidence shows various rates in 
different regions, with the highest incidence rates in Aus-
tralia and New Zealand [27]. More interestingly, it was 
found that acral melanoma on the hands’ palms and the 
feet soles is more prevalent in people working with her-
bicides such as dichlorprop, atrazine, propanil, and para-
quat, and it has a higher incidence in those using these 
herbicides at home than in those who do not [28]. Also, 
the susceptibility to skin melanoma is significantly influ-
enced by the status of immunity, as immunosuppressive 
diseases such as Acquired Immunodeficiency Syndrome 
(AIDS) increase the risk of developing skin melanoma 
due to the inability of compromised immunity to effec-
tively protect the body against the formation and devel-
opment of solid tumours [29, 30].

Clinical manifestation of melanoma
Melanoma can manifest in different forms depending 
on the primary location of melanocyte transformation. 
They broadly occur from mutations in the skin mel-
anocytes known as cutaneous melanoma; the iris, cho-
roid, and ciliary body melanocytes collectively referred 
to as uveal melanomas; and the mucosal melanocytes 
leading to mucosal melanoma [31]. Of the three, cuta-
neous melanoma is the most predominant, accounting 
for 91.2% of all melanoma cases. The National Compre-
hensive Cancer Network (NCCN) set a new standard 
in 2017 to classify cutaneous melanoma into 4 types: 
chronic sun damage (CSD), non-chronic sun damage 
(non-CSD), acral, and mucosal melanomas. CSD-mel-
anomas are asymmetric, flat, yellowish-brown, brown, 

or black macules with irregular borders. Non-CSD mel-
anomas are divided mainly into superficial spreading 
melanoma (SSM), which begins as an asymptomatic tan 
to black macules that then grow radically, and nodu-
lar melanoma (NM), which commonly appears as blue 
or black, but sometimes pink to red nodules that lack 
Asymmetry, Border, Colour, Diameter and Evolving 
(ABCDE) features and can turn into elevated nodules, 
ulcers, or bleeding. Acral melanoma (AM) is charac-
terised by irregular pigmentation, parallel ridges, and 
multicomponent lesions on hairless areas such as the 
palms, fingernails, soles, and toenails. Mucosal mela-
noma can be found in the lips, eyelids, oral cavity, intes-
tinal mucosa, vulva, and many other sites. It appears 
as structureless, grey areas in early dermoscopic diag-
nosis and as lesions with a multicomponent pattern in 
advanced dermoscopic diagnosis [32].

Limitations and challenges in the management 
of malignant melanoma
The surgical removal option is primarily used for local-
ised melanoma [33]. It can be used in some metastatic 
melanoma cases as well, but it is not considered to be 
curative, and other treatment options are still needed, 
such as chemotherapy. Although chemotherapy was 
the only curative option for metastatic melanoma until 
recently, its usage has decreased since the appearance 
of immunotherapies and targeted therapies [34]. To 
treat melanoma, numerous targeted therapies have 
been developed, among which the BRAF inhibitors 
vemurafenib and dabrafenib are the most promising 
[35, 36]. Despite their high efficacy, secondary resist-
ance within a short time has been observed in most of 
the patients with BRAF-mutated melanomas [35–37]. 
Because of the high expense and severe side effects 
of the current treatments, research is still ongoing to 
overcome the limitations and complications, improve 
safety, and find other drug options [34].

Table 1  Summary of the methodology employed in the study

Methodology steps Description

Literature search ScienceDirect, PubMed

Inclusion criteria Full-text articles published in English

Various study designs, such as observational, case–control, cohort, cross-sectional, and randomised 
controlled trials

Studies involving paediatric and adult populations

Studies published between 2001 and 2023

Exclusion criteria Stand-alone abstracts and unpublished studies. Non English Studies

Search terms “Mutanome”, “melanoma”, “immunotherapy” and “artificial intelligence”

Additional search A manual search was conducted to find references for recently published, procedure-specific reviews
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The use of targeted therapy in malignant melanoma
A variety of cancer inhibitors are used in targeted ther-
apy, including mitogen-activated protein kinase (MEK) 
inhibitors (trametinib), BRAF inhibitors (vemurafenib 
and dabrafenib), cyclin-dependent kinase (CDK) inhibi-
tors (ribociclib, abemaciclib, and palbociclib), and c-Kit 
inhibitors (imatinib) [38]. Trametinib is a monotherapy-
approved MEK1/MEK2 inhibitor used to treat BRAF 
V600-mutant metastatic melanoma [39]. Although 
vemurafenib is a BRAF mutant inhibitor with high selec-
tivity and efficacy against metastatic melanoma with 
BRAF V600 and non-V600E mutations [38], treatment 
resistance develops in most patients [40]. Dabrafenib is 
a subsequent-generation BRAF mutant inhibitor. The 
Food and Drug Administration (FDA) approved it for the 
treatment of unresectable or metastatic BRAF V600E-
mutated melanomas [41, 42]. Ribociclib, abemaciclib, 
and palbociclib are a new class of specific CDK4/6 inhibi-
tors that are more effective and have fewer side effects 
[38]. Imatinib is a c-Kit inhibitor found to be effective 
against c-Kit-mutated metastatic melanomas [43].

Immunotherapy options available for malignant 
melanoma
Substantial advances have been made in immunotherapy 
treatments for metastatic melanoma over the last three 
decades. Cancer vaccines, adoptive cell therapies, and 
immunomodulatory approaches are the primary three 
types of immunotherapy options [34]. Interleukin-2 
treatment was one of the first immune therapies for met-
astatic melanoma [35, 44]. Unfortunately, it was found to 
be highly toxic [34]. Cancer vaccines are therapeutic vac-
cines designed to stimulate the immune system against 
cancer cells. Due to the various evasion mechanisms 
cancer cells have, creating these vaccines has been chal-
lenging, so the early vaccines were not effective, and none 
have been approved for clinical application yet [45–47].

Up to date, the most effective treatment is immune 
checkpoint inhibitors [44, 48, 49]. Antibodies against the 
immune checkpoint receptors, such as programmed cell 
death protein 1 (PD-1), PD-1 ligand (PD-L1/2), and cyto-
toxic T-lymphocyte-associated protein 4 (CTLA-4), can 
be used to counteract the immune checkpoint modula-
tion in melanoma. These antibodies disrupt binding to 
the corresponding ligands and tolerance signals, ulti-
mately leading to the activation of the immune system 
[49–52]. The anti-CTLA-4 antibody ipilimumab and the 
anti-PD-1 antibodies nivolumab and pembrolizumab are 
currently the approved immune checkpoint inhibitor 
drugs for melanoma treatment [51]. Despite the benefits 
of checkpoint inhibitors, they have serious side effects 
mainly related to immunity because they inhibit the tol-
erance of immune mechanisms [53, 54]. Corticosteroids 

can neutralise their toxicity in some cases, but others 
continue to struggle with these side effects. In addition, 
a majority of patients still show no response, and others 
may even acquire secondary resistance [34, 55]. Over-
view of malignant melanoma with its newer therapeutic 
targets is summarised in Fig. 1.

Mutanome‑based individualised immunotherapy 
for malignant melanoma
Individualisation of melanoma immunotherapy repre-
sents a shifting paradigm in the field of oncology towards 
personalised medicine [7, 56, 57]. This transforma-
tion relies on various factors such as biomarker expres-
sion [58–64], immune system profiling [65], tumour 
microenvironment [66], patients’ well-being [67, 68], 
and preferences [69]. However, tumour characteristics, 
which encompass the patient’s mutanome and respective 
molecular profile, are the most important factor. The role 
of mutanomes in immunotherapy for malignant mela-
noma is summarised in Fig. 2. This holds a promising and 
powerful tool, as most melanoma mutations are unique 
and rarely shared, even among the same type [9, 70].

The “mutanome” or “mutation-genome” reflects the 
tumour genetic mutational signature [71], while the 
molecular profile includes the ribonucleic acids (RNAs) 
[72], encoded neoantigens [73, 74], and neo-epitopes 
[15]. This concept emerged thanks to sequencing tech-
nologies, especially after publishing the first complete set 
of mutations in Saccharomyces cerevisiae yeast in 2002 
[75]. One of the pioneering studies, which was done by 
Krauthammer and his team, was the first to unveil mela-
nomas’ mutational landscape using exosome sequencing 
[76].

As time progressed, significant advancements in 
sequencing technologies propelled us from traditional 
and exosome-only sequencing to embracing more 
sophisticated approaches, such as whole genome and 
next-generation sequencing [77]. These advancements 
have allowed for a more comprehensive exploration of 
all types of mutations, ranging from single nucleotide 
polymorphisms (SNPs) and insertions to deletions and 
frameshifts, regardless of their effect as driver or passen-
ger mutations and irrespective of whether they occur in 
coding or non-coding regions [77, 78]. This way, we can 
catch mutations even with low mutational burden mela-
nomas [79, 80].

Moreover, the integration of additional fields such as 
transcriptomics, immunogenicity testing [81], and com-
putational biology pushed the concept to its extreme lim-
its [82–84]. This enabled us to leverage individualisation 
by decoding the patient’s tumour mutanome using NGS 
according to the health human genome atlas, predicting 
neoantigens [85], and identifying epitopes with strong 
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human leukocyte antigen (HLA) binding affinity [83, 86]. 
That precious information can later be used in different 
types of immunotherapies.

In the context of adoptive cell therapy, research uti-
lising this knowledge showed that tumour-infiltrating 
lymphocytes (TIL) prepared based on predicted neo-
antigens and neo-epitopes exhibited enhanced T cell 
expansion and response [87, 88]. But like other passive 
immunotherapies, despite their potential benefits, they 

lack long-term effectiveness due to challenges like T cell 
specificity loss [89] and research still trying to solve them 
[90].

A multimodal immunotherapy that makes use of both 
passive and active approaches is oncolytic virus therapy. 
Studies demonstrated that genetically modified viruses, 
like herpes [91], adenoma, and vaccinia, have the ability 
to directly lyse virus-infected melanoma cells and release 
tumour neoantigens, stimulating anti-tumour immunity 

Fig. 1  Overview of malignant melanoma along with its new therapeutic targets. CTLA-4, cytotoxic T-lymphocyte associated protein-4; PD-1, 
programmed cell death protein 1; TCR, T cell receptor; PDL-1, programmed death ligand 1; MHC, major histocompatibility complex; DC, dendritic 
cell; BRAF, v-Raf murine sarcoma viral oncogene homolog B1; MEK, mitogen-activated protein kinase; ERK, extracellular signal-regulated kinase; 
RAF, rapidly activated fibrosarcoma; RAS, rat sarcoma; RTK, receptor tyrosine kinase; GTP, guanosine triphosphate; NRAS, neuroblastoma RAS viral 
oncogene homolog; PTEN, phosphatase and tensin homolog; TP53, tumour protein 53; BRCA, breast cancer gene; CDK, Cyclin dependent kinase
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[2, 93]. In recent studies, scientists have further enhanced 
active immunotherapy by coating viruses with predicted 
tumour neoantigens, Peptide-coated Conditionally Rep-
licating Adenovirus (PeptiCRAd) [94]. This innovative 
technique holds great promise for future research.

However, vaccines continue to remain the primary 
research focus of active melanoma immunotherapy [95–
97]. Mutanome-based individualisation approaches have 
been employed to develop on-demand vaccine manufac-
turing pipelines and conduct thorough testing. Various 

vaccine types, including peptide, RNA, and dendritic cell 
vaccines, have been studied.

For instance, autologous dendritic cells loaded ex vivo 
with patient-specific neoantigens demonstrated good tol-
erance and an increase in the breadth and diversity of T 
cell responses [98–100]. Subsequently, custom messenger 
ribonucleic acid (mRNA) liposomal vaccines capable of 
neoantigen encoding were developed and tested, result-
ing in the expansion of preexisting T cells and the induc-
tion of new T cell responses against the neo-epitopes 

Fig. 2  Overview of mutanome-based immunotherapy for malignant melanoma. DNA, deoxyribonucleic acid; RNA, ribonucleic acid; T-VEC, 
talimogene laherparepvec; GM-CSF, granulocyte macrophage colony stimulating factor; HSV-1, herpes simplex virus-1; NGS, Next Genome 
Sequencing; BAM, binary alignment map; VCF, variant cell format; SNP, single nucleotide polymorphism; shRNA, small hairpin RNA; cDNA, 
complementary DNA
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[101–104]. Other studies explored a custom peptide vac-
cine synthesis approach using patients’ neoantigen struc-
tures [105, 106].

This approach to melanoma treatment ensures that the 
treatment is tailored to the individual profile, maximising 
the chances of a successful immune response and reduc-
ing the risk of treatment resistance. This can also directly 
or indirectly target cancer cells and kill them. Overall, the 
integration of mutanome knowledge in individualised 
immunotherapy holds promise for revolutionising mela-
noma treatment, offering patients the potential for bet-
ter responses, prolonged remissions, and a step closer to 
achieving the goal of precision oncology.

Despite our advancing knowledge of the mutanome, 
several limitations remain when implementing this 
research for individualised immunotherapy of malignant 
melanoma. One of the biggest limitations is the impact 
physiological differences in the body have on the absorp-
tion, distribution, metabolism, and elimination of drugs 
[107–109]. Immune checkpoint inhibitors (ICI) have 
revolutionised the treatment of malignant melanoma; 
however, the response rate is approximately one-third 
[110–112]. A lack of research into the pharmacokinetic 
responses of ethnicity, age, sex, and disease stage, how-
ever, limits the effectiveness of individualised immuno-
therapy [113]. Targeting this area of research remains 
challenging due to the large genetic variations that exist 
within these subpopulations [114]. Effectively target-
ing and utilising such data could allow individualised 
immunotherapy for malignant melanoma to reach its full 
potential [70].

AI and cancer immunotherapy
AI techniques of importance in cancer immunotherapy
In the field of cancer treatment, immunotherapy has 
made significant advancements and is now widely used. 
However, a challenge that has arisen is the identifica-
tion of suitable individuals who can benefit from this 
therapy and who should receive it. To address this chal-
lenge, AI has been developed to aid in performing tasks 
that typically require human intelligence. These tasks 
include interpretation of language, perception of visual 
materials, and decision-making [115]. The utilisation of 
AI technologies has resulted in enhanced precision and 
effectiveness in the diagnosis and prediction of cancer 
treatment responses. AI has enabled the classification of 
patients into two groups: those who will respond posi-
tively to cancer immunotherapy and those who will not, 
thereby ensuring that only suitable patients receive the 
treatment [116]. With the aid of neural-based models, 
the tumour immune microenvironment of solid tumours 
such as colorectal, breast, lung, and pancreatic cancer, 
which plays a crucial role in patients’ responses to cancer 

immunotherapy, has been accurately characterised by 
integrating RNA sequencing (RNA-Seq) and imaging 
data in a clinical setting [117].

Currently, numerous research groups and companies 
are dedicated to creating programmes that can enhance 
the efficiency, precision, and affordability of cancer 
screening. By acting as a supplementary visual aid, AI 
can aid medical professionals in identifying and diagnos-
ing cancer in images with greater precision than would 
be possible otherwise. This results in improved accuracy 
and, consequently, insight for patients [117]. The applica-
tion of deep learning (DL) methods enables the precise 
and automated identification of changes in tumour size 
and gene status, which can serve as an assisting tool for 
monitoring the efficacy of immunotherapy [115].

As biotechnology continues to develop and our under-
standing of the molecular mechanisms of tumours 
expands, immunotherapy has become an effective 
method of training the immune system to recognise 
and target specific cancer cells. This treatment modal-
ity can enhance the immune cells’ ability to identify and 
eliminate cancer cells while also providing the body with 
supplementary components to augment the immune 
response. There are different types of cancer immuno-
therapy available, including targeted antibodies, cancer 
vaccines, adoptive cell transfer, tumour-infecting viruses, 
checkpoint inhibitors, cytokines, and adjuvants. In the 
prediction of immunotherapy responses, AI has been 
employed in the evaluation of immune signatures, medi-
cal imaging, and histologic analysis [117].

Current application of AI in the individualisation of cancer 
immunotherapy
The utilisation of AI, a cutting-edge technology, has made 
it possible to provide personalised treatment to patients 
with tumours by automating the prediction of the effects 
of tumour immunotherapy through the construction of 
models [118]. The use of AI in immunotherapy is con-
centrated on three main themes. The first theme con-
cerns tumour neoantigens, which form the foundation 
of immunotherapy. A key unresolved issue in this area is 
the rapid and precise prediction of immunogenic tumour 
antigens using AI, which would minimise the need for 
experimental screening and validation [119]. Machine 
learning (ML) techniques have the potential to identify 
the factors that determine tumour immunogenicity and 
the peptides presented by major histocompatibility com-
plex class I (MHC-I), which can be utilised to assess neo-
antigen binding and/or treatment response predictions in 
cancer immunotherapy [115]. Artificial neural networks 
enable the observation of tumour antigen T cell epitopes 
in patients with melanoma, which can be utilised for 
personalised cancer immunotherapy [117]. The second 
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theme of AI application in immunotherapy pertains to 
the scope for improvement in tumour therapeutic mono-
clonal antibodies, despite their notable success. This has 
spurred much innovation in antibody design, with AI-
augmented antibodies holding immense potential for 
further advancements in cancer treatment. The advent of 
DL has opened up new avenues for therapeutic antibody 
design, including the prediction of structure, screening 
for target binding, affinity maturation, and pharmaceuti-
cal property prediction.

The third theme pertains to the challenges associ-
ated with predicting the response to immunotherapy. 
This includes the identification of patients who are most 
likely to respond to immunotherapy using multimodal 
and multi-scale biomarkers, as well as the characterisa-
tion of the tumour immune microenvironment [119]. 
AI-based techniques like imaging and histopathology 
analysis both ML-based and DL-based approaches have 
demonstrated efficacy in interpreting tumour microenvi-
ronment (TME) in combination with immunohistochem-
istry. These methods reveal disparities in the expression 
and localisation of biomarkers among various histologi-
cal subtypes, which can be leveraged to predict responses 
to immunotherapies or other targeted therapies [115].

To predict the effectiveness of immunotherapy using 
AI, a general approach involves creating a training 
cohort and a validation cohort. The multi-scale medi-
cal data from the training cohort are collected, filtered, 
segmented, and features extracted and selected. This 
data is then used to train and model AI. The validation 
cohort is used to verify the results of the AI’s learning. 
The multi-scale medical data may include genomics, 
proteomics, pathological tissue, computed tomography 
/ magnetic resonance (CT/MR) imaging, and more. The 
goal is for the AI to predict whether a patient will benefit 
from immunotherapy or suggest further evaluation, such 
as whole genome sequencing. Additionally, AI can pre-
dict which immunotherapy drug will be most effective for 
the patient. This approach can improve the accuracy of 
immunotherapy treatment and potentially lead to better 
patient outcomes [118].

Radiomics is an emerging AI technique that is gain-
ing increasing attention in cancer management. It is an 
algorithm-based method that extracts patterns from 
images obtained from computed tomography, magnetic 
resonance imaging, positron emission tomography or a 
combination of two of these [120, 121]. These patterns 
serve as the basis for response rate monitoring [122], 
individualisation of therapy [122], risk stratification [121, 
123], survival analysis [123], metastatic capability pre-
dictions [121, 124] and patient monitoring [122]. In the 
individualisation of therapy, this is especially useful as it 
can discern little differences in obtained images, thereby 

forming patterns that can be used in correlation genera-
tion, thus influencing therapy choices. One of such is its 
application as a predictive signature generator for bet-
ter correlation with immune markers. CD8+ expression 
in melanoma was found to be inversely proportional to 
the mean of positive pixel (MPP) and standard deviation 
(SD) using radiomics which also correlates with prog-
nostic outcomes in patients [125]. It has similarly been 
applied in signature–immune marker correlations in 
other types of cancers like non-small-cell lung [126] and 
renal cancers [127]. Furthermore, signature correlations 
have also been used in evaluating survival in melanoma 
patients treated with pembrolizumab [123].

Advantages and limitations of the use of AI in cancer 
immunotherapy
AI has emerged as a highly advanced tool in the field of 
computer-assisted cancer immunotherapy. As clinical 
data and AI methodologies continue to advance, AI has 
the potential to play an even greater role in predicting 
immunotherapy responses. One of the greatest strengths 
of AI is its ability to learn from large sets of data and 
identify patterns that can be applied to specific tasks, 
such as mutation annotation or diagnosis [128].

The incorporation of AI in cancer immunotherapy 
has been recognised as a developing computer-assisted 
approach that can enhance the predictive abilities and 
functional roles of personalised therapy. Nonetheless, 
there are discrepancies in the application of AI tech-
niques for widespread use in clinical practice. AI-based 
algorithms have the potential to be a promising strategy 
for optimising individualised immunotherapy and ulti-
mately improving the healthcare quality and prognosis of 
patients [115].

The application of AI in cancer immunotherapy has 
demonstrated some limitations. These include a shortage 
of available data, data biases, insufficient data sharing, a 
lack of code sharing, and difficulties in interpreting the 
models. Also, there is a gap between the ease of gather-
ing data from various platforms and the ease of access 
by external agencies for independent use, especially for 
private or controlled-access datasets. The absence of 
data sharing hinders the effective validation of AI mod-
els across multiple medical centres. Additionally, the 
variability of data presents a significant challenge in 
implementing DL for immunotherapy, whereby incon-
gruities in data batches and quality issues often lead to 
unsuccessful external validation [119].

The intricate nature of predicting immunotherapy 
outcomes necessitates collaboration between scientific 
researchers, enterprises, and clinicians to construct data-
bases and establish industry standards. This collabora-
tive effort should aim to eliminate technical obstacles 
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and foster the development of AI-assisted systems that 
can precisely identify the target population for immuno-
therapy, accurately forecast treatment efficacy and prog-
nosis, and promote the implementation of AI-assisted 
treatment while earning the trust of both physicians and 
patients [118].

AI in refining mutanome‑based immunotherapy 
of malignant melanoma
AI is a tool that can potentially change outcomes in 
malignant melanoma. With advances in AI, the sequenc-
ing of melanoma mutations quickly, the development 

of individualised vaccines, the determination of the 
response rate to individualised immunotherapy, patient 
stratification based on predicted outcomes, and modify-
ing the use of adoptive cell therapy can be refined to meet 
the increasing needs of melanoma patients. The use of AI 
in refining mutanome-based immunotherapy is summa-
rised in Fig. 3.

AI in understanding melanoma mutanome
AI has the potential to advance comprehension of the 
melanoma mutanome and its significance for immu-
notherapy. Melanoma harbours an exceptionally high 

Fig. 3  Application of AI refining in mutanome-based immunotherapy. ACT, adoptive cell therapy; AI, artificial intelligence; ML, machine learning
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mutational burden, which produces tumour-particular 
neoantigens that can be targeted by the immune system 
[21, 130]. Nevertheless, completely exploiting the muta-
nome necessitates the identification of immunogenic 
mutations from whole genome and transcriptome data 
[131]. AI methods employing deep finding algorithms 
can promote mutanome examination, and this has been 
used to advance rapid technology-based identification 
and validation of individual mutanomes by individual-
ised vaccines against cancer (IVAC) in the individualisa-
tion of immunotherapy for malignant melanoma [132]. 
Also, neural networks can recognise mutation-derived 
neoantigens by incorporating genomic, epigenomic, and 
immunogenicity information at an unprecedented scale 
and swiftness [133]. This will empower exhaustive min-
ing of the melanoma mutanome to develop personalised 
mutanome vaccines [134]. AI can also uncover mutations 
related to immunotherapy response or resistance, guid-
ing individual categorisation and combination tactics 
[129].

By accelerating mutanome profiling, AI has the poten-
tial to boost comprehension of how the mutational land-
scape influences immunotherapy efficacy in melanoma. 
This may reveal new pathways to conquer resistance by 
targeting special mutational signatures [135]. AI-driven 
multi-omic relationships with clinical outcomes could 
also supply insights into optimising mutanome-focused 
methods through rational drug combinations impact-
ing ribosome biogenesis or epigenetics [136, 137]. Thus, 
AI is well-positioned to revolutionise understanding of 
the melanoma mutanome’s benefits for immunotherapy 
through thorough assessment of its tumour-particular 
abnormalities.

AI in the development of melanoma vaccines
Personalising melanoma vaccines based on mutanomes 
is an up-and-coming application of AI [95–97]. With 
machine learning algorithms able to learn from large 
amounts of omics data and make inferences that can be 
applied to new situations, the identification of neoan-
tigens can be optimised, leading to the development of 
individualised vaccines for different mutational variants 
[128]. Aside from this, machine learning can streamline 
vaccines suited to individual immune profiles and hasten 
the development of large amounts of vaccines for differ-
ent individuals in a short period of time due to swift algo-
rithms and inherent decision-making capabilities [128]. 
An mRNA vaccine, mRNA-4157, in a phase 3 clinical 
trial for melanoma by Moderna and Merck utilises pro-
prietary algorithms in the identification of mutanomes as 
targets of the vaccine [138]. Advancements in these algo-
rithms are also predicted to shorten the production time 
from 6 weeks to 30 days, thus increasing the turnaround 

time, which is one of the major issues identified with the 
individualisation of immunotherapy [138]. As is known, 
neoantigens result from mutations in tumours, which 
can vary among melanoma patients [56]. The identifica-
tion of immunogenic neoantigens has been challenging 
so far [139]. However, AI advancements in next-genera-
tion sequencing (NGS) have made it possible to identify 
neoantigens, which are ideal vaccine targets [56]. An AI 
tool developed by Evaxion (EVX) named Pioneer Tech-
nology has been used to identify specific neoantigens for 
individualised melanoma vaccines like EVX-01 and EVX-
02, which are novel molecules at various stages of clinical 
trials [140].

AI in refining adoptive cell therapy immunotherapy option
In addition to vaccines, AI can refine the adoptive cell 
therapy (ACT) immunotherapy option. It is known that 
melanoma mutations are unique and rarely shared [9, 
70]. Thus, AI can build on this knowledge to enhance the 
modulations of T cells, having greater specificity for indi-
vidual mutations. Also, with deep learning algorithms, 
AI can simulate what happens when ACT is used, thus 
limiting resource waste and identifying major lapses and 
potential adverse effects early on in the drug discov-
ery process [141]. A major problem with ACT is T cell 
specificity loss, which can be optimised by T cell receptor 
(TCR) deep sequencing. However, TCRs of significance 
are rare to come across. With AI, TCR can easily be iden-
tified compared to previous experiences via machine 
learning algorithms that can predict TCR–target interac-
tions specific to every individual [89]. Another issue with 
ACT is that T cells cannot recognise all mutanomes in 
tumours. Rather than using peptide-binding algorithms 
to identify immunogenic mutations, advancements in 
predictive algorithms have made it possible for minigenes 
to analyse T cell reactivity in tumours, thus making it 
possible to develop novel ACTs that recognise individual 
neoantigens [142].

AI in determining prediction capacities
AI presents an advancing approach that can achieve 
things that were previously deemed resource-intensive 
in melanoma. This can help improve prediction capaci-
ties, thus increasing the drug discovery pipeline effi-
ciency [143]. In particular, AI can improve predictions in 
patients that are at a higher risk of metastasis based on 
their mutanome [141], thus allowing for early preventive 
measures that can increase patient survival rates. Dif-
ferent melanoma mutanomes are associated with vary-
ing levels of serum biomarkers [144]. Some predictive 
biomarkers, like dermcidin, interferon-gamma, inter-
leukin-4, and granulocyte macrophage colony stimu-
lating factor (GM-CSF), are associated with metastatic 
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melanoma in early-stage patients [141]. Using an AI algo-
rithm to streamline metastatic risk assessment can help 
improve immunotherapy options that will best reduce 
the risk of metastasis at an early stage. Machine learning 
can also increase the speed of determining the probability 
of survival in melanoma patients. This was demonstrated 
in research where a combination of machine learning 
and radiomics was used to assess the survival rates of 
advanced melanoma patients treated with the immune 
checkpoint blocker pembrolizumab [123]. This approach 
can benefit from machine learning’s ability to automate 
how lesions are identified and segmented in melanoma. 
AI has also been used to predict the specific type of 
mutations that initiated a particular cancer in an indi-
vidual via a noninvasive method [145]. The detailing 
of the BRAF mutation underlying the melanoma brain 
metastasis using machine learning-assisted radiomics 
technique was achieved in contrast to the norm where 
tissue biopsy is required to determine the genetic aspect 
of brain metastasis [145]. This noninvasive approach pre-
sents a novel technique that can be utilised to predict the 
exact mutanome in melanoma, thus facilitating better 
immunotherapy selection [145]. However, this method 
cannot predict the development of metastasis in specific 
patients. Table  2 provides a summary of the potential 
impact of AI on the enhancement of mutanome-based 
immunotherapy for malignant melanoma.

Future prospects and potential limitations of AI 
in advancing and refining mutanome‑based 
immunotherapy for malignant melanoma
AI is a powerful tool that can change the future man-
agement and outcomes associated with malignant mela-
noma. In light of rising concerns about the development 
of resistance to available immunotherapy options, explor-
ing the mutanome-based immunotherapy approach 
refined by AI is gaining traction. Limited research has 
been carried out on how understanding individual muta-
tions can benefit therapy outcomes due to the diverse 
nature of the mutations underlying the development of 
melanomas [9, 70]. Also, the use of AI in melanoma man-
agement is not without drawbacks. Notably, imprecisions 
in AI’s ability to adequately detect lesions in people out-
side the dataset used in developing the AI algorithm have 
been cited [146], thus raising concerns about AI’s infer-
ence applicability in a larger population [146]. However, 
AI still remains a game changer that can effectively turn 
the tide on melanoma management.

A futuristic utility of AI is its ability to swiftly through 
large sets of mutanomes in a short time. One major prob-
lem often cited in the development of individualised 
immunotherapy is the time and resource intensiveness 
of sequencing individual mutanomes and modulating 

immunotherapy options specific to the mutanomes. ML 
can process large amounts of data in a relatively short 
time, carry out gene-treatment pairing for best fit, deter-
mine the chances of toxicity and efficacy, and also use 
this data as a pattern for future predictions [143].

Exploring AI to improve individualised immunother-
apy options based on mutanomes remains an aspect 
of the cancer drug discovery process requiring much 
attention. The growing resistance to multiple immu-
notherapies available for melanoma continues to dash 
the hopes of discovering immunotherapy ignited in the 
scientific world. Worse still, other therapy options like 
chemotherapy are ineffective in achieving the cure rates 
obtained from immunotherapies. Thus, it is important to 
improve and facilitate research that seeks to enhance the 
application of AI in individualising therapy best suited 
for the specific genetic mutations in every patient. With 
improvements in technologies and newer AI algorithms 
developing, individualised immunotherapy is becoming 
a possibility. This will help increase the efficiency of the 
drug discovery process, reduce adverse drug events, and 
increase survival rates in melanoma patients.

While AI shows promise for optimising mutanome-
based immunotherapy, certain limitations must be 
addressed. Accurately predicting immunogenic neoan-
tigens from tumour sequencing data remains challeng-
ing due to tumour heterogeneity and the complexity of 
antigen presentation [21, 137]. DL models require vast 
amounts of high-quality immunogenomic training data, 
which are difficult to obtain, potentially limiting general-
isability [131, 133].

Additional barriers include the dynamic interplay 
between mutations, epigenetic modifications, and cel-
lular signalling pathways influencing immunogenicity, 
which are challenging to fully incorporate into static AI 
models [135, 137]. Mutational signatures associated with 
endogenous and exogenous DNA damage involve com-
plex biological processes not easily defined by current 
machine learning algorithms [135]. There are also ethical 
concerns around explaining “black box” AI predictions to 
patients and difficulties validating models using prospec-
tive clinical trial data [129, 131].

Overcoming these limitations requires multidiscipli-
nary collaborations between clinicians, immunologists, 
geneticists, and AI specialists. Larger pan-cancer immu-
nogenomic databases with linked multi-omic profiles and 
treatment outcomes could improve generalisability but 
represent a major undertaking [133]. Combining unsu-
pervised and supervised machine learning with mecha-
nistic modelling may help capture tumour biology 
dynamics not evident from bulk sequencing alone [133, 
137]. With refinements, AI has the potential to opti-
mise mutanome-based therapies if technical challenges 
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Table 2  Summary of the role of AI in refining mutanome-based immunotherapy of malignant melanoma

ACT, adoptive cell therapy; AI, artificial intelligence; IVAC, Individualised vaccines against cancer; TCR, T cell receptor

Advantages Description

Enhance understanding of melanoma mutanome [120–124, 129, 132, 133, 
135–137]

• Deep finding algorithms can promote mutanome examination, 
that is used to advance rapid technology-based identification and valida-
tion of individual mutanomes by IVAC

• Neural networks recognise mutation-derived neoantigens by incorporat-
ing genomic, epigenomic, and immunogenicity information at an unprec-
edented scale and swiftness

• Uncover mutations related to immunotherapy response or resistance, 
guiding individual categorisation and combination tactics

• Potential to reveal new pathways to conquer resistance by targeting 
special mutational signatures

• Supply insights into optimising mutanome-focused methods 
through rational drug combinations impacting ribosome biogenesis 
or epigenetics

• Radiomics extract patterns from imaging modalities like CT, MRI, and PET

• Patterns derived from radiomics serve as a basis for response rate monitor-
ing, risk stratification, survival analysis, metastatic capability predictions, 
and patient monitoring

• In individualised therapy, radiomics discerns subtle differences in images, 
forming patterns influencing therapy choices

Facilitate the development of melanoma vaccines [95–97, 125, 128] • Personalised melanoma vaccines

• Radiomics contributes to individualised therapy by generating predictive 
signatures

• Optimised identification of neoantigens, leading to the development 
of individualised vaccines for different mutational variants

• Streamline vaccines suited to individual immune profiles

• Hasten the development of large amounts of vaccines for individuals 
in a short period of time

Refining adoptive cell therapy immunotherapy option [9, 70, 89, 125–127, 
141, 142]

• Refine ACT​

• Enhance the modulation of T cells, having greater specificity for individual 
mutations

• Limit resource waste and identify major lapses and potential adverse 
effects early through simulation

• Mitigate T cell specificity loss, optimised by TCR deep sequencing

• Development of novel ACTs that recognise individual neoantigens, ena-
bled by advancements in predictive algorithms for minigenes to analyse T 
cell reactivity in tumours

• Application in signature-immune marker correlations extends to other 
cancers like non-small-cell lung and renal cancers

Determine prediction capacities [123, 141, 143, 145] • Improve prediction capacity, thus increasing drug discovery pipeline 
efficiency

• Predict specific type of mutations that initiate cancer in an individual 
via a noninvasive method (machine learning-assisted radiomics technique)

• Improve predictions in patients at higher risk of metastasis based on their 
mutanome

• Streamline metastatic risk assessment

• Allows for early preventive measures that can increase patient survival 
rates

• Automate the identification and segmentation of lesions in melanoma

• Radiomics serve as a predictive signature generator, aiding in better cor-
relation with immune markers

• Signature correlations have been utilised in evaluating survival in mela-
noma patients treated with pembrolizumab
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around data, modelling complexity, and clinical integra-
tion are addressed.

Conclusion
AI is a tool with vast potential in melanoma, as dem-
onstrated by numerous studies on how to optimise its 
use to simplify management approaches. Although it is 
not without lapses, its application in rapidly sequenc-
ing mutanomes to enhance the ease of individualising 
therapy in all stages of melanoma is revolutionary. Thus, 
exploring AI to refine mutanome-based individualisation 
of therapy can strengthen current predictions of response 
and toxicity in melanoma patients at all stages. Owing to 
its robustness, it can also be used to predict the kind of 
mutation underlying a cancer type, thus easing the ease 
of patient stratification for immunotherapy and helping 
future prevention of metastasis. However, more research 
is required to address the shortcomings of AI in its mul-
tiple distinguishing capabilities, large-scale application, 
and data porosity in order to aid its future outcomes in 
melanoma.
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