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Abstract 

Background Body temperature (BT) is routinely measured and can be controlled in critical care settings. BT can 
impact patient outcome, but the relationship between BT and mortality has not been well-established.

Methods A retrospective cohort study was conducted based on the MIMIC-IV (N = 43,537) and eICU (N = 75,184) 
datasets. The primary outcome and exposure variables were hospital mortality and first 48-h median BT, respectively. 
Generalized additive models were used to model the associations between exposures and outcomes, while adjust-
ing for patient age, sex, APS-III, SOFA, and Charlson comorbidity scores, temperature gap, as well as ventilation, 
vasopressor, steroids, and dialysis usage. We conducted subgroup analysis according to ICU setting, diagnoses, 
and demographics.

Results Optimal BT was 37 °C for the general ICU and subgroup populations. A 10% increase in the proportion 
of time that BT was within the 36–38 °C range was associated with reduced hospital mortality risk in both MIMIC-IV 
(OR 0.91; 95% CI 0.90–0.93) and eICU (OR 0.86; 95% CI 0.85–0.87). On the other hand, a 10% increase in the propor-
tion of time when BT < 36 °C was associated with increased mortality risk in both MIMIC-IV (OR 1.08; 95% CI 1.06–1.10) 
and eICU (OR 1.18; 95% CI 1.16–1.19). Similarly, a 10% increase in the proportion of time when BT > 38 °C was associ-
ated with increased mortality risk in both MIMIC-IV (OR 1.09; 95% CI 1.07–1.12) and eICU (OR 1.09; 95% CI 1.08–1.11). 
All patient subgroups tested consistently showed an optimal temperature within the 36–38 °C range.

Conclusions A BT of 37 °C is associated with the lowest mortality risk among ICU patients. Further studies to explore 
the causal relationship between the optimal BT and mortality should be conducted and may help with establishing 
guidelines for active BT management in critical care settings.
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Introduction
Body temperature (BT) is one of the most important vital 
signs of critically ill patients [1]. It is commonly used as a 
biomarker for detecting infection and its fluctuations are 
frequently observed among critically ill patients [2]. BT is 
additionally used as a therapeutic target for management 
in the critical care setting, and it can be adjusted with 
varying degrees of precision using available technologies 
[3, 4]. More precise physical methods of cooling include 
the use of cooling blanket systems and infusion of cooled 
intravenous fluids, whereas less precise pharmacological 
methods of cooling include the use of antipyretic medica-
tions like paracetamol and non-steroidal anti-inflamma-
tory drugs [5, 6]. In addition, controlled warming devices 
exist such as counter-current heat exchangers, heat insu-
lators, and warming mattresses [7].

Numerous studies have examined the impact of BT on 
clinical outcomes in intensive care unit (ICU) patients 
with a range of conditions [8]. Both hypothermia and 
fever are associated with worse mortality outcomes 
among general ICU patients [9, 10], with an incremental 
mortality increase for every 1 °C deviation from normo-
thermia [8, 9, 11]. However, the definitions of hypother-
mia and fever are variable, and the optimal BT ranges 
are unclear [12–14]. For example, in one study fever was 
defined as BT greater than 37.5  °C and hypothermia as 
a BT lower than 36.5  °C [12], while in other studies the 
temperature cut-offs are different [14]. Furthermore, the 
reported influence of BT on mortality among critically 
ill patients has been mixed [1, 3, 11, 15–18]. Among ICU 
patients with brain pathologies, no difference in survival 
has been observed with or without temperature man-
agement in one study [4], but fever and hypothermia 
seemed to have worse mortality outcomes in other stud-
ies [12, 19, 20]. Among septic patients, hypothermia was 
associated with increased mortality, while fever was not 
[17, 21]. Although ICU severity scoring systems such as 
APACHE do take BT into account, it remains uncertain if 
the temperature ranges defined by the system apply to all 
subgroups, especially since the calibration and predictive 
performance of the score is known to vary widely across 
patient disease and demographic subgroups [22, 23].

Given the uncertainty around the definitions of hypo-
thermia and fever, as well as the variability in reported 
associations of BT with mortality, our study aims to 
derive and validate an optimal BT associated with 
minimum mortality for critically ill patients includ-
ing various subgroups. We hypothesize that a U-shaped 
distribution exists between BT and mortality, with the 
extremes of low and high temperature being associated 
with increased mortality. In addition, we aim to investi-
gate if the difference between the maximum and mini-
mum BT measurement (i.e., the temperature gap) is also 

associated with increased mortality. The study results can 
help define hypothermia and fever and guide targeted 
temperature management for ICU patients.

Methods
Data source and cohort selection
Our study was designed following the Strengthening 
the Reporting of Observational Studies in Epidemiology 
(STROBE) reporting guidelines [24]. It was conducted 
using two datasets, the Medical Information Mart for 
Intensive Care IV (MIMIC-IV) and eICU Collabora-
tive Research Database (eICU). MIMIC-IV captures 
over a decade of patient ICU stays (from 2008 to 2019) 
at the Beth Israel Deaconess Medical Center and con-
tains information for over 60,000 total ICU patients [25]. 
On the other hand, eICU contains data for over 200,000 
ICU admissions from 2014 to 2015 monitored by eICU-
affiliated programs across the United States [26]. Since 
the eICU dataset comprises data from many distinct par-
ticipant hospitals with customized workflows and clinical 
documentation processes, data reliability and comple-
tion differ at the hospital level. To address this, we only 
included data from hospitals with at least 95% comple-
tion of fluid input and output documentation within the 
eICU database. For both datasets, we considered only 
each patient’s first ICU stay and only included adult 
patients (≥ 18 years of age) with at least five different BT 
readings within their first 48 h of ICU admission.

Variables and pre‑preprocessing
For each patient, we collected dynamic BT data within 
48  h of their ICU admission, derived median BTs, and 
computed the temperature gap (maximum–minimum 
BT). To minimize inclusion of questionable tempera-
ture readings we set a plausible BT range to be 30–45 °C, 
excluding measurements outside this range. BTs were 
assumed to be constant in between recorded measure-
ments. Our main and secondary outcome measures were 
hospital mortality and ICU mortality, respectively. We 
also collected demographic, diagnosis, drug usage, and 
procedure information. Diagnoses were collected using 
ICD-9 and ICD-10 codes; specifically, we considered 
atrial fibrillation, cancer, cardiac arrest, chronic kidney 
disease, chronic liver disease, chronic obstructive pul-
monary disease, diabetes, hypertension, ischemic heart 
disease, and traumatic brain injury (TBI). For cardiac 
arrest, sepsis, stroke, and TBI, we included only patients 
who had these conditions coded as a primary diagnosis. 
Other variables collected or calculated included sex, age, 
dialysis, steroid use (hydrocortisone, prednisone, pred-
nisolone, cortisone, dexamethasone), vasopressor use, 
invasive ventilation within the first 48  h of admission, 
APS-III score, SOFA score, Charlson Comorbidity Score, 
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ICU type, and emergency admission. SOFA and Charlson 
Comorbidity scores were directly provided in the MIMIC 
database. To derive SOFA and Charlson scores for eICU, 
we used the code provided by Sarkar et al. [27] and Chan-
dra et al. [28], respectively.

Statistical analysis
Generalized Additive Models (GAM) were utilized to 
analyze the association between our exposure variables 
and the target outcomes. All GAM models were adjusted 
for the following covariates: age at admission, sex, APS-
III score, SOFA score, Charlson comorbidity score, tem-
perature gap, as well as steroid, ventilation, vasopressor, 
and dialysis usage within the first 48  h of admission. 
For each of these covariates as well as for the patient 
subgroupings, we measured their association with hos-
pital mortality using a Wilcoxon rank sum test and Chi-
squared test for continuous and categorical variables, 
respectively.

We used a priori clinical evidence in addition to a 
stepwise regression modeling to aid in the selection of 
these covariates. Age and sex have been repeatedly dem-
onstrated to be associated with BT: BT decreases with 
age [29–31] and is higher in women than men [32, 33]. 
Vasopressin is known to produce antipyretic effects dur-
ing fever [34, 35], while steroids may have varying effects 
on BT depending on the type of steroid and the patient’s 
condition [36, 37]. Dialysis is also included as it may 
influence BT, since blood that is returned to the patient 
is in thermal equilibrium with the dialysate [38]. Moreo-
ver, we adjusted for ventilation use due to its association 
with mortality as well as temperature gap to account for 
swings in the patients’ BT.

We statistically validated the importance of the chosen 
covariates through stepwise forward and backward vari-
able selection procedures [39] using the AIC criterion. 
This was carried out using MIMIC-IV data with median 
BT and hospital mortality as the exposure and outcome 
variables of interest, respectively (Additional file  6: 
Table S1).

For eICU, given potential heterogeneity across differ-
ent hospitals, statistical models included hospital ID as a 
random slope term. We also attempted to determine an 
appropriate temperature gap for analysis. Should there 
be no inflection point when temperature gap is plotted 
against mortality, we planned to use a gap of ± 1  °C, as 
randomized control trials of targeted temperature man-
agement were generally able to control BT within 2  °C 
around a target temperature [40, 41].

Three types of GAMs were fitted, each with a different 
exposure variable and with hospital mortality as the tar-
get outcome; each type of model was fitted on both the 

MIMIC-IV and eICU datasets separately. The first GAM 
model incorporated median BT as the main exposure 
variable and modeled the variable using cubic splines. 
The second GAM incorporated temperature gap as the 
exposure variable and modeled the variable with cubic 
splines. The number of knots chosen for the cubic spline 
terms were determined by splitting the data into 80% 
training and 20% testing sets, then fitting a GAM using 
5–15 knots for spline terms and selecting the number 
which maximized the area under the ROC on the train-
ing set. The third GAM incorporated the proportion of 
BTs within a specified BT range as the exposure variable 
and modeled this term linearly. These BT ranges used 
were prespecified as the threshold at which temperature 
gap was associated with increased mortality, or ± 1 °C of 
the optimal BT, if there was no clear threshold found for 
temperature gap. Odds ratios of hospital mortality and 
ICU mortality were calculated for every 10% increase 
in time within the specified optimal BT ranges for both 
MIMIC-IV and eICU datasets.

In our subgroup analyses, we repeated the same 
analyses to identify optimal BTs as well as to calculate 
the odds ratios associated with every 10% increase in 
time spent within the specified optimal BT range. Sub-
groups included in our analyses are as follows: cardiac 
ICU patients, medical ICU patients, neurosurgical ICU 
patients, surgical ICU patients, atrial fibrillation, cancer, 
cardiac arrest, chronic kidney disease, chronic liver dis-
ease, congestive heart failure, chronic obstructive pul-
monary disease, diabetes, hypertension, ischemic heart 
disease, non-septic cardiac arrest, sepsis, septic car-
diac arrest, stroke, TBI, Asian, Black, Hispanic, White 
patients, patients aged ≥ 75 years, emergency admission, 
and acetaminophen usage.

Analytical software
Statistical analyses were carried out using Python (ver-
sion 3.10) and the packages Scikit-learn (version 1.2.2), 
PyGam (version 0.8.0), and NumPy (version 1.24.3).

Code availability
https:// github. com/ nus- mornin- lab/ tempe rature_ paper_ 
2023.

Results
We included 43,537 and 75,184 unique ICU admis-
sions from the MIMIC-IV and eICU datasets, respec-
tively. Hospital and ICU mortality rates were 9.3% and 
6.2% for MIMIC-IV and 9.2% and 5% for eICU. Patient 
demographics, median APS-III, SOFA, and Charlson 
Comorbidity Index were similar across both datasets. For 
MIMIC, rates of emergency admission (53.3%), invasive 
ventilation (28.2%), and steroid usage (16.2%) were higher 

https://github.com/nus-mornin-lab/temperature_paper_2023
https://github.com/nus-mornin-lab/temperature_paper_2023
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than that of eICU (39.1%, 24.5%, and 9.3% for emergency 
admission, invasive ventilation, and steroid usage respec-
tively). However, dialysis usage was similar (3.1% and 
3.3% for MIMIC and eICU) and vasopressor usage was 
higher in eICU (10.1%) vs MIMIC-IV (4%) (Table 1).

We found a U-shaped relationship between median BT 
and odds of hospital mortality in our ICU patient cohorts 
(Fig. 1A, B). The optimal BTs found (as given by the x-axis 
of minimum point of the U-shaped curve) were 36.8 and 
37.0  °C for MIMIC-IV and eICU, respectively. We con-
sidered the overall optimal BT to be 37 °C. On the other 

hand, temperature gap was found to have a positive linear 
relationship with hospital mortality in both MIMIC-IV 
(Fig. 1C) and eICU cohorts (Fig. 1D), with no threshold 
found. We therefore specified a BT range of 37 ± 1 °C (i.e., 
36–38  °C) to analyze the association of mortality with 
proportion of BTs within the specified BT range.

Increased time spent with a BT < 36 °C was associated 
with increased risk of hospital mortality (Fig.  2A, B). A 
10% increase in time spent with a BT < 36  °C was asso-
ciated with 8–18% increased odds of hospital mortality: 
adjusted odds ratio (OR) of 1.08 (95% CI 1.06–1.10) in 

Table 1 Patient cohort characteristics for MIMIC-IV and eICU datasets

Data are presented as median (IQR) or N (%)

Patient characteristics MIMIC‑IV (N = 43537) eICU (N = 75184) MIMIC‑IV Hosp. Mortality 
association P‑Value

eICU Hosp. 
Mortality 
association P‑Value

Temperature (°C) 36.9 (36.6–37.2) 37.1 (36.6–37.6)  < 0.001  < 0.001

Temperature gap (°C) 1.1 (0.7–1.7) 1.1 (0.7–1.6)  < 0.001  < 0.001

Hospital death 4069 (9.3%) 6931 (9.2%) NA NA

ICU death 2678 (6.2%) 3784 (5%) NA NA

Sex (Male) 24368 (56%) 40402 (53.7%) 0.002 0.173

Age (years) 66.8 (54.8–78.1) 65 (53–76)  < 0.001  < 0.001

APS-III 39 (29–54) 40 (29–52)  < 0.001  < 0.001

SOFA 3 (1–5) 2.5 (1–4.5)  < 0.001  < 0.001

Charlson score 5 (3–7) 4 (2–6)  < 0.001  < 0.001

Emergency 23212 (53.3%) 29384 (39.1%)  < 0.001 0.931

Ventilation 12273 (28.2%) 18418 (24.5%)  < 0.001  < 0.001

Vasopressor usage 1748 (4%) 7582 (10.1%)  < 0.001  < 0.001

Dialysis 1354 (3.1%) 2448 (3.3%)  < 0.001  < 0.001

Steroid usage 7033 (16.2%) 7026 (9.3%)  < 0.001 0.61

CVICU + CCU 7560 (17.4%) 7773 (10.3%)  < 0.001 0.299

MICU 8255 (19%) 6623 (8.8%)  < 0.001  < 0.001

Neuro SICU 1236 (2.8%) 9632 (12.8%)  < 0.001 0.011

SICU 5695 (13.1%) 4953 (6.6%) 0.816  < 0.001

Atrial fibrillation 5950 (13.7%) 6174 (8.2%)  < 0.001  < 0.001

Cancer 5421 (12.5%) 5326 (7.1%)  < 0.001  < 0.001

Cardiac arrest 22 (0.1%) 1480 (2%)  < 0.001  < 0.001

Chronic kidney disease 7485 (17.2%) 4771 (6.3%)  < 0.001  < 0.001

Chronic liver disease 4174 (9.6%) 809 (1.1%)  < 0.001  < 0.001

Congestive heart failure 9574 (22%) 5965 (7.9%)  < 0.001  < 0.001

Chronic obstructive pulmonary 
disorder

9672 (22.2%) 6378 (8.5%)  < 0.001 0.06

Diabetes 7208 (16.6%) 7140 (9.5%) 0.751 0.031

Hypertension 23347 (53.6%) 9500 (12.6%) 0.192  < 0.001

Ischemic heart disease 13780 (31.7%) 5642 (7.5%) 0.014 0.258

Non-septic cardiac arrest 276 (0.6%) 1457 (1.9%)  < 0.001  < 0.001

Sepsis 20369 (46.8%) 3910 (5.2%)  < 0.001  < 0.001

Septic cardiac arrest 594 (1.4%) 23 (0%)  < 0.001  < 0.001

Stroke 2959 (6.8%) 3153 (4.2%)  < 0.001  < 0.001

Traumatic brain injury 1808 (4.2%) 1202 (1.6%)  < 0.001 0.24
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the MIMIC-IV cohort and OR of 1.18 (95% CI 1.16–1.19) 
in the eICU cohort (Table 2). Increased time spent with 
a BT within 36–38  °C was associated with decreased 
risk of hospital mortality (Fig.  2C, D). A 10% increase 
in time spent with a BT within 36–38  °C was associ-
ated with 9–14% decreased odds of hospital mortality: 
adjusted OR of 0.91 (95% CI 0.90–0.93) in the MIMIC-
IV cohort and odds ratio of 0.86 (95% CI 0.85–0.87) in 
the eICU cohort (Table  2). Increased time spent with a 
BT > 38 °C was associated with increased risk of hospital 
mortality (Fig. 2A, B). A 10% increase in time spent with 
a BT > 38 °C was associated 9% increased odds of hospital 
mortality: adjusted OR of 1.09 (95% CI 1.07–1.12) in the 
MIMIC-IV cohort and OR of 1.09 (95% CI 1.08–1.11) in 

the eICU cohort (Table 2). Unadjusted ORs are presented 
in Additional file 7: Table S2.

Across most of the subgroups tested, we also found 
U-shaped relationships between median BT and odds of 
hospital mortality (Additional file 1: Figure S1, Additional 
file 2: Figure S2). All optimal BTs found across the sub-
groups fell within the 36–38  °C range with slight varia-
tions (Fig.  3). ORs of hospital mortality calculated for a 
10% increase in time spent within a BT of 36–38  °C for 
each subgroup ranged from 0.78 to 0.96 (Additional 
file 3: Figure S3, Additional file 4: Figure S4).

Adjusted odds ratio of hospital and ICU mortality for 
every 10% increase in total time spent at each tempera-
ture range in the first 48 h of ICU stay. ORs are adjusted 
for age, sex, APS-III score, Charlson Comorbidity Score, 

Fig. 1 Probability of hospital mortality vs median BT for A MIMIC-IV and B eICU. Probability hospital mortality vs temperature gap in the first 48 h 
of ICU stay for C MIMIC-IV and D eICU. All models are adjusted for age, sex, APS-III score, Charlson Comorbidity Score, SOFA score, ventilation usage, 
vasopressor usage, steroids usage, dialysis usage. A and B are additionally adjusted for temperature gap, while B and C are adjusted for median 
temperature
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Fig. 2 Probability of hospital mortality vs proportion of time BT < 36 °C for A MIMIC and B eICU, BT between 36 and 38 °C for C MIMIC-IV and D 
eICU, BT > 38 °C for E MIMIC-IV and F eICU. Adjusted for age, sex, APS-III score, Charlson Comorbidity Score, SOFA score, ventilation usage, 
vasopressor usage, steroids usage, dialysis usage, and temperature gap

Table 2 Adjusted odds ratio of mortality at different temperature ranges

Temperature MIMIC‑IV eICU

Hospital mortality ICU mortality Hospital mortality ICU mortality

 < 36 °C 1.08 (1.06–1.1) 1.11 (1.08–1.14) 1.18 (1.16–1.19) 1.2 (1.18–1.22)

36–38 °C 0.91 (0.9–0.93) 0.89 (0.87–0.91) 0.86 (0.85–0.87) 0.84 (0.83–0.85)

 > 38 °C 1.09 (1.07–1.12) 1.1 (1.07–1.13) 1.09 (1.08–1.11) 1.1 (1.08–1.12)
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SOFA score, ventilation usage, vasopressor usage, ster-
oids usage, dialysis usage, and temperature gap. Data pre-
sented as OR (95% CI) (Additional file 5: Figure S5).

Discussion
In our parallel analysis of two large ICU databases with a 
total of > 118,000 ICU patients, we determined 37.0 °C to 
be the BT associated with optimal survival for critically 
ill patients. Increased time spent outside of the 36–38 °C 
BT range was independently associated with increased 
odds of mortality. We also found that minimizing the 
BT gap (difference of maximum and minimum BT) in 
the ICU was associated with lower mortality, indicating 
that BT variability in the ICU was associated with harm. 
These findings were consistent across the general ICU 
population and for all subgroups tested.

In clinical publications involving “febrile” patients, the 
temperature used to define fever was often absent [14]. 
When a temperature threshold for fever was specified, 
it has ranged from a low of 37.2  °C to a high of 38.3  °C 
[14, 42]. To help clarify uncertainty over the definition 
of fever, based on our results, we propose that fever be 
defined as BT > 38 °C, normal BT as 36–38 °C, and hypo-
thermia as BT < 36  °C. As we have demonstrated in our 
results, maintaining patient BTs within the 36–38  °C 
range confers a survival benefit independent of swings in 
patient BT.

The detrimental effects of extremes of BT can be 
explained through various possible physiological mech-
anisms [43]. Fever involves a rise of the body’s core 
temperature beyond the confines of the hypothalamic 
set-point temperature and is common among critically 

ill patients [1]. In extreme cases, fever may contribute to 
complications such as cardiac arrhythmias, tachycardia, 
increased oxygen demand, convulsions, and brain dam-
age [18]. The impact of hypothermia on the other hand is 
less well-understood, though studies suggest that it can 
undermine immune function by impairing neutrophil 
and macrophage function [44, 45], induce insulin resist-
ance and hyperglycemia [45], as well as stimulate cold 
diuresis with risk of hypovolemia [44].

The physiological mechanisms through which extreme 
BT can impact a patient’s condition are known to vary 
across different conditions. For example, among patients 
with coronary heart disease, cold-induced shivering and 
increased catecholamine release resulting from even 
mild hypothermia predisposes to myocardial ischemia. 
This results from the decreased coronary blood flow and 
increased myocardial oxygenation needs caused by vaso-
constriction and increased heart, respiratory, and meta-
bolic rate [46]. Fever, on the other hand, has been linked 
to infarct expansion [47] and decreased left ventricular 
function [48].

Among patients with severe sepsis, hypothermia has 
been linked to increased mortality and organ failure [2]. 
However, the exact effects of fever on sepsis patients con-
tinues to be a subject of contention [49]. There is some 
evidence to show that antipyretic treatment in sepsis 
patients leads to worse outcomes [21]. It has also been 
suggested that in patients with infection, mounting a 
febrile response can have protective effects via the slow-
ing of micro-organism growth [50] and enhancement of 
the host immune system [21]. Supporting this, a study by 
Young and colleagues found a temperature of 39–39.4 °C 

Subgroup MIMIC-IV eICU
Acetaminophen 36.6 36.8

Age >=75 36.7 36.9
Atrial Fibrillation 36.7 36.8
CVICU + CCU 36.8 37.2

Cancer 36.9 37.2
Chronic Kidney Disease 36.8 37.2
Chronic Liver Disease 37.3 37.0

Chronic Obstructive Pulmonary Disease 36.8 37.0
Congestive Heart Failure 36.8 37.4

Diabetes 36.8 36.9
Emergency Admission 37.0 37.0

Ethnicity Asian 36.8 NA
Ethnicity Black NA 37.3

Ethnicity Hispanic 37.2 36.9
Ethnicity White 37.0 37.0
Hypertension 36.9 NA

Ischemic Heart Disease 36.8 37.2
MICU 37.3 37.0

Neuro SICU 36.9 36.9
Non Septic Cardiac Arrest 37.0 37.3

SICU 37.1 37.2
Sepsis 37.1 37.0

Septic Cardiac Arrest 37.2 NA
Stroke 36.9 36.7

Traumatic Brain Injury 37.2 37.0

Fig. 3 Optimal BT for patient subgroups. *NA measurements indicate that a U-shaped relationship was not found for the subgroup
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to be associated with the lowest mortality risk for sep-
sis patients [51]. On the other hand, fever is known to 
increase metabolic demand and oxygen consumption of 
different organs, notably the brain and heart, which can 
exacerbate the septic patient’s condition [18, 19]. In a 
mouse model of bacterial pneumonia, fever was shown 
to decrease survival despite accelerating the elimination 
of pathogens and enhancing innate host defense. The 
authors found that fever was associated with increased 
vascular pulmonary injury, enhanced accumulation of 
neutrophils, and increased levels of cytokines in bron-
choalveolar lavage fluid [52]. Our current findings sup-
port the maintenance of normothermia in these patients, 
with an optimal temperature found to be around 37  °C. 
However, it should be noted that the decrease in the 
odds of mortality for every 10% of time spent within the 
range of normothermia in this group of patients was pro-
nounceably smaller compared to that of other subgroups. 
Ultimately, the effect of fever in patients with infection is 
likely determined by a balance between the advantages 
conferred to host immune response and the adverse met-
abolic/inflammatory effects of fever [49].

Cardiac arrest patients suffer from high mortality 
rates due to post-cardiac arrest shock and brain injury, 
which is known to be exacerbated by fever [53]. Simi-
larly, among patients with neurological pathologies or 
insults (e.g., stroke or brain injury), fever has been linked 
to increased length of ICU stay [54] and mortality [12, 
19, 20] likely attributable to the aggravation of cerebral 
metabolic distress. In recent decades, TH has become a 
popular post-cardiac arrest treatment option, after some 
studies have shown it to improve neurological recovery in 
cardiac arrest patients [55]. It has also been proposed for 
TBI and stroke patients, with the belief that it may reduce 
damage from excitotoxins, inflammation, free radicals, 
and necrosis leading to increased neuronal survival [56]. 
However, more recent randomized trials failed to show 
any improved functional outcome when compared with 
strict normothermia in cardiac arrest [57, 58], stroke, and 
TBI patients [59–61]. Conversely, TH has been linked to 
increased risk for complications and adverse effects such 
as pneumonia, hyperglycemia, and cardiac arrhythmias 
[59]. These trials concur with our results showing an 
optimal BT of around 37  °C for cardiac arrest, TBI, and 
stroke patients, and a decrease in odds of mortality in all 
these subgroups the longer BT is kept within 36–38  °C. 
An alternative and newer form of TH, selective brain 
cooling, may avoid the complications associated with sys-
temic, ‘whole-body’ cooling while providing neuropro-
tective effects [59, 61].

Our study has several limitations. First, given the 
observational study design, no causal inference between 
BT and mortality can be made. So, while we showed that 

BT may serve as a useful predictive biomarker, it should 
not be used as a therapeutic target without further pro-
spective randomized trials. Second, our study was lim-
ited by the accuracy and integrity of the EHR datasets 
used, though the consistency of results between the two 
datasets suggest that the results are reliable. Third, we 
could not consider the site or method of BT temperature 
readings, as this information was not present in the eICU 
and incomplete in the MIMIC databases. In the ICU, BT 
can be measured using intravascular, bladder, esophageal, 
or rectal probes, or with infrared tympanic membrane 
and temporal artery thermometers [18]. Small variations 
may exist among these methods, and some measure-
ments (e.g., oral and axillary) are considered less accurate 
than others [62]. Fourth, the MIMIC and eICU cohorts 
represented only ICUs in the US, and further studies 
from ICUs outside the US will be required to validate our 
findings.

Our findings should encourage further research in 
active BT management within 36–38  °C in the ICU to 
optimize patient outcome. Targeted BT trials should 
test maintaining an optimal BT within as tight a range 
as possible. In addition, the existence of an optimal BT 
range supports the further development of closed loop 
temperature management devices to achieve more pre-
cise temperature control in critically ill patients. On the 
other hand, our results do not back the use of therapeu-
tic hypothermia (TH), a protocol that has been proposed 
for post-cardiac arrest, TBI, and stroke patients [55]. Our 
results concur with several studies that have shown lit-
tle benefit from TH and strengthen the case for a gradual 
shift from that strategy [58, 63].

Interpretation
We found that a BT of 37 °C was associated with optimal 
outcomes for the critically ill patient population and this 
result was consistent across various subgroups. Future 
trials of temperature management could aim to target a 
BT of 36–38 °C, while minimizing BT variability.
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