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Abstract 

Background  Head and neck squamous cell carcinoma (HNSCC) is an extremely heterogeneous and metastatic 
disease. Anoikis, which is a specific type of programmed apoptosis, is involved in tumor metastasis, tissue homeosta-
sis, and development. Herein, we constructed an anoikis-related long non-coding RNA (lncRNA) signature to predict 
the prognosis, immune responses, and therapeutic effects in HNSCC patients.

Methods  A total of 501 HNSCC samples were acquired from the TCGA database and randomly classified 
into the training and validation groups (1:1 ratio). Thereafter, the results derived from the training set were analyzed 
with the LASSO regression analysis, and a novel anoikis-related lncRNA risk model was constructed. Time-dependent 
ROC curves and Kaplan–Meier analysis were carried out to assess the diagnostic value and survival outcomes. A nom-
ogram was utilized to predict the prognostic accuracy. Furthermore, we studied the tumor microenvironment, tumor 
mutation burden, enrichment pathways, and the response to chemotherapy and immunotherapy.

Results  Seven anoikis-related lncRNAs (AC015878.1, CYTOR, EMSLR, LINC01503, LINC02084, RAB11B-AS1, Z97200.1) 
were screened to design a novel risk model, which was recognized as the independent prognostic factor for HNSCC 
patients. The findings implied that low-risk patients showed significantly longer OS, PFS, and DSS compared to those 
high-risk patients. The two groups that were classified using the risk model showed significant differences in their 
immune landscape. The risk model also predicted that low-risk HNSCC patients could attain a better response 
to immunotherapy, while high-risk patients would be more sensitive to gemcitabine, docetaxel, and cisplatin.

Conclusions  We constructed a novel risk model that could be employed for effectively predicting patient prognosis 
with a good independent prognostic value for HNSCC patients. Furthermore, this model could be used for designing 
new immunotherapeutic and chemotherapeutic strategies, and it helps clinicians establish personalized and detailed 
strategies for HNSCC patients.
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Introduction
Head and neck squamous cell carcinoma (HNSCC) is 
a prevailing type of cancer that affects the head and 
neck region, originating from the mucosal epithe-
lium, especially the nasopharynx, larynx, oropharynx, 
and hypopharynx [1]. One of the most predominant 
pathological types of head and neck cancer is squa-
mous cell carcinoma, which accounts for 90% of cases, 
and affects people’s health and lives. With more than 
600,000 new diagnoses and over 300,000 deaths each 
year, it is the sixth most common cancer worldwide [2]. 
With the development of medical technologies, HNSCC 
patients with early stage showed a better prognosis, as 
they benefited from the combined treatment strategies, 
including surgery, radiotherapy, and chemotherapy [3]. 
However, patients with recurrent or metastasis are usu-
ally incurable and show a median survival duration of 
only 10 months [1]. The introduction of immune check-
point blockade (ICB) has significantly improved patient 
outcomes, but about 80% of patients showed an unsatis-
factory response to therapy owing to individual variabil-
ity and drug resistance [4, 5]. In addition, most HNSCC 
patients were diagnosed at an advanced stage, which 
could be attributed to the lack of effective early diagnosis, 
leading to a 5-year OS rate of less than 50% [6]. Hence, 
reliable predictive biomarkers must be identified for 
improving the prognosis of HNSCC patients.

Anoikis was first described in 1994, and is a specific 
type of programmed apoptosis process, which occurs due 
to the detachment of cells from the extracellular matrix 
(ECM) [7]. It is involved in tissue homeostasis, disease 
occurrence, and tumor metastasis [8]. It acts as a protec-
tive mechanism and helps in regulating the uncontrolled 
growth of dysplastic cells or ectopic somatic cells. How-
ever, during the infiltration and metastasis of malignant 
neoplasms, tumor cells exhibit anoikis resistance and 
are released from their cell–ECM and cell–cell adhesion 
states. After they are released, they survive, disseminate, 
and metastasize in the circulatory system by resisting the 
anoikis-induced tumor cell death [9, 10]. Recurrence and 
metastasis are issues that disturb the patients and doc-
tors. Hence, further research in anoikis is necessary to 
effectively optimize human cancer therapeutic strategies.

In the past, long non-coding RNAs (lncRNAs) have 
garnered a lot of scientific interest owing to their impor-
tant role in cancer progression, including proliferation, 
migration, metastasis, immune evasion, and tumor prog-
nosis [11]. lncRNAs are described as noncoding tran-
scripts with > 200 nucleotides [12]. To date, lncRNAs 
were seen to be closely related to anoikis  resistance  in 
several tumors. In breast cancer, APOC1P1-3 inhibited 
early apoptosis of cancer cells and enhanced anoikis 
resistance by decreasing the activated poly ADP-ribose 

polymerase (PARP) and Caspase 3, 8, 9 levels [13]. In 
lung adenocarcinoma, LINC01546 acts as a pro-meta-
static molecule and is necessary for AKT-induced tumor 
infiltration, metastasis, and anoikis resistance [14]. 
MRPL23-AS1 increased the tumor cell anoikis resistance 
in salivary adenoid cystic carcinoma by using the zeste 
homolog 2 (EZH2) enhancer at the p19INK4D promoter 
region [15]. Similarly, HOTAIR also regulates anoikis 
resistance by employing EZH2 and affecting H3K27 
methylation in ovarian cancer cells [16]. Nevertheless, 
none of the researchers have explored the involvement of 
anoikis-related lncRNAs in HNSCC patients to date.

The relationship between lncRNAs and anoikis served 
as the basis for constructing the prognostic scoring 
model based on the anoikis-related lncRNAs in HNSCC. 
In addition, we assessed the relationship between the 
risk model and tumor somatic mutation burden (TMB) 
and the immunological features and established its clini-
cal predictive value for predicting the efficacy in terms of 
immunotherapy and chemotherapy response.

Methods
Data collection
We downloaded all data for TCGA–HNSC project from 
The Cancer Genome Atlas database (TCGA, https://​
portal.​gdc.​cancer.​gov/, updated February 12, 2023). 501 
HNSCC samples with complete prognostic data were fil-
tered out. Then, the data comprised transcriptomic pro-
filing information and corresponding clinicopathological 
were downloaded. Table  1 depicts the detailed clinical 
features of HNSCC patients. The 501 HNSCC samples 
were categorized into training and validation cohorts 
(sets, 1:1 ratio) for constructing and validating the risk 
model. Figure  1 presents the flowchart implemented in 
this study. It is important to note that TCGA is a publicly 
accessible and open-access database, hence, no patient 
consent for participation or institutional ethical approval 
was necessary.

Identifying the anoikis‑related lncRNAs
We also acquired 65 anoikis-related genes from the 
GeneCards database (https://​www.​genec​ards.​org) with 
relevance scores > 2. The gene expression levels were 
extracted with the “limma” package from the training 
cohorts. We then conducted Pearson correlation analy-
sis for screening the co-expressed lncRNAs using the 
“igraph” and “reshape2” packages, with the threshold 
set at p < 0.001 and |Pearson R|> 0.4. We also conducted 
the univariate regression analysis to identify the anoikis-
related lncRNAs based on their prognostic value (p 
values < 0.05).

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://www.genecards.org
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Constructing the prognostic risk model
Here, we employed the Least Absolute Shrinkage and 
Selection Operator (LASSO) regression analysis to iden-
tify the anoikis-related lncRNAs related to the survival 

data-based prognosis with the ‘glmnet’ tool in R soft-
ware. Finally, 7 lncRNAs (AC015878.1, CYTOR, EMSLR, 
LINC01503, LINC02084, RAB11B-AS1, Z97200.1) were 
shortlisted for designing the prognostic signature. The 

Table 1  Clinical features of the HNSCC patients included in this study

Covariates Type Entire Training Validation P value

Number Percent Number Percent Number Percent

Age

 ≤ 60 246 49.10 116 46.40 130 51.79 0.2636

 > 60 255 50.90 134 53.60 121 48.21

Gender

Female 133 26.55 70 28 63 25.10 0.5261

Male 368 73.45 180 72 188 74.90

Smoking history

No 113 22.55 58 23.20 55 21.91 0.9418

Yes 378 75.45 187 74.80 191 76.10

Unknown 10 2 5 2 5 1.99

Alcohol history

No 158 31.54 82 32.80 76 30.28 0.285

Yes 332 66.27 165 66 167 66.53

Unknown 11 2.20 3 1.20 8 3.19

Histopathological grade

G1 61 12.18 31 12.40 30 11.95 0.5758

G2 299 59.68 150 60 149 59.36

G3 119 23.75 61 24.40 58 23.11

G4 2 0.40 – – 2 0.80

Unknown 20 3.99 8 3.20 12 4.78

T classification

T1 33 6.59 16 6.40 17 6.77 0.0649

T2 144 28.74 59 23.60 85 33.86

T3 130 25.95 75 30 55 21.91

T4 179 35.73 94 37.60 85 33.86

Unknown 15 2.99 6 2.40 9 3.59

N classification

N0 239 47.70 113 45.20 126 50.20 0.6737

N1 80 15.97 45 18 35 13.94

N2 153 30.54 78 31.20 75 29.88

N3 7 1.40 4 1.60 3 1.20

Unknown 22 4.39 10 4 12 4.78

Metastasis status

M +  25 4.99 15 6 10 3.98 0.535

M0 471 94.01 233 93.20 238 94.82

Unknown 5 1 2 0.80 3 1.20

Stage

Stage I 19 3.79 9 3.60 10 3.98 0.0938

Stage II 95 18.96 36 14.40 59 23.51

Stage III 102 20.36 57 22.80 45 17.93

Stage IV 271 54.09 142 56.80 129 51.39

Unknown 14 2.79 6 2.40 8 3.19
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below-mentioned formula was used for computing the 
risk score for every HNSCC sample based on the coef-
ficients by means of multivariate regression analysis. The 
medium risk score was designated as a baseline value for 
classifying the training, validation, and entire cohorts 
using the data derived from both high- and low-risk 
groups:

Comprehensive assessment of prognostic value for the risk 
model
The scatter plots and risk curves were used to depict the 
distribution and survival status regarding the risk scores 
for all HNSCC patients. The difference in the overall sur-
vival (OS) rate between both risk groups was presented 

Risk score =
∑n

(i=1)
coefi× anoikis - related lncRNA expression

with the Kaplan–Meier (K–M) curves generated by the 
log-rank test. We generated the time-dependent receiver 
operator characteristic (ROC) curves with the risk model 
for determining the 1-, 3-, and 5-year OS rates with the 
help of the “timeROC” and “survivalROC” R packages 
using the data derived from the training, validation, and 
entire cohorts respectively. To comprehensively ascer-
tain the efficacy of the risk model, the entire cohorts were 
employed for subsequent evaluation. The “Rtsne” and 
“ggplot2” packages were used to carry out Principal com-
ponent analysis (PCA) and assess if the anoikis-related 
lncRNA signature, whole genome, anoikis-associated 
genes, and anoikis-associated lncRNAs could categorize 
the HNSCC patients into the high- and low-risk groups. 
Prognostic efficacy was compared between age, gender, 
grade, stage, and risk model using multivariate ROC 
curves, C-index analysis, and decision curves. Thereafter, 

Fig. 1  Flowchart of the strategy used in this study
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the univariate and multivariate regression analyses were 
implemented to assess the independent prognosis-pre-
dictive value of the risk model. Subgroup analysis of OS 
was undertaken to study the implementation of the prob-
able risk model depending on the gender, histopatho-
logical grade, age, and clinical stage. Furthermore, the 
log-rank test was utilized for comparing the progression-
free survival (PFS) and the disease-specific survival (DSS) 
values in both risk groups, while the prognostic signifi-
cance of DSS and PFS was also evaluated using the Cox 
regression analyses. In addition, the clinical data and risk 
scores were used to develop the nomogram to anticipate 
survival probability. We employed the time-dependent 
ROC curves and calibration plots for determining the 
performance of the proposed nomogram to anticipate 
the survival of patients.

Tumor microenvironment (TME) and the infiltration levels 
of the immune cells
We calculated the immune-, stromal-, and ESTIMATE 
scores of TME for both risk groups using the ESTIMATE 
algorithm and plotted the heatmap and violin plots. Fur-
thermore, the enrichment scores for the 13 immune-
linked pathways were compared for each HNSCC 
specimen using the single sample gene-set enrichment 
analysis (ssGSEA) process. The relative proportion of 22 
tumor-infiltrating immune cells in both risk groups was 
computed using the CIBERSORT analysis.

Immunotherapy and chemotherapy
Here, we have also studied whether the risk scores could 
serve as biomarkers for depicting the clinical responses 
of patients to chemotherapy and immunotherapy. For 
this purpose, the immunophenoscores (IPSs) were 
acquired from the TCGA–HNSC project of The Can-
cer Immunome Atlas (TCIA) database (https://​tcia.​at/​
home). Thereafter, IPS values in both groups were com-
pared. Finally, the expression levels of 13 ICB genes 
(HAVCR2, IDO1, CD8A, GZMB, GZMA, PRF1, LAG3, 
IFNG, CTLA4, TNF, PDCD1, CD274, and TBX2) were 
compared between the two risk groups. In addition, 
four clinically used common chemotherapeutic drugs 
(like docetaxel, gemcitabine, cisplatin, and paclitaxel) 
were considered to assess the chemotherapy response by 
comparing the half-maximum inhibitory concentration 

(IC50), which was computed with the “pRRophetic” 
software.

TMB analysis
The somatic mutations determined in both risk groups 
were calculated and visualized by the “maftool” and 
“GenVisR” packages. The TMB score was generated by 
dividing the sum of somatic mutations by the exome size 
[17]. Log-rank tests and K–M curves were determined 
to assess the OS values in high- and low-TMB groups by 
utilizing the “survival” and “survminer” packages.

Functional annotation of the risk model
The differentially expressed genes (DEGs) between both 
risk groups were identified with the thresholds set as 
log2-fold change (|log2FC|) > 1 and false discovery rate 
(FDR) p < 0.05, using “DESeq2” software. The DEGs 
results were used to carry out Kyoto Encyclopedia of 
Genes and Genomes (KEGG) and the Gene ontology 
(GO) enrichment analyses to investigate the probable 
signaling pathways and biological functions, with the help 
of the “clusterProfiler” and “ggplot2” tools. In addition, 
the Gene Set Enrichment Analysis (GSEA) was employed 
to determine the activated functional pathways in both 
risk groups that fulfilled the FDR p < 0.05 criterion.

Statistical analysis
R software (ver. 4.1.0) was employed for analyzing the 
data and plotting the graphs. Wilcoxon and Chi-squared 
tests were used for analyzing the continuous and categor-
ical variables, respectively. Data with p values < 0.05 were 
termed statistically significant.

Results
Identifying the prognostic anoikis‑related lncRNAs 
in HNSCC tissues
A total of 533 anoikis-related lncRNAs were filtered by 
Pearson correlation analysis using the 65 anoikis-related 
gene expression levels determined for 501 HNSCC 
patients from the TCGA database. These data have been 
presented using the Sankey diagram (Fig.  2A). In addi-
tion, we also screened 33 prognostic lncRNAs using the 
univariate regression analysis, and assessed the prog-
nostic anoikis-related lncRNAs in this study (p < 0.05) 
(Fig.  2B). The 501 HNSCC samples were classified into 
the training and validation sets (ratio of 1:1). In addition, 

(See figure on next page.)
Fig. 2  Constructing the anoikis-related lncRNA signature in the training set. A Sankey diagram depicting the relationship between anoikis-related 
genes and co-expressed lncRNAs; B forest plot of 33 prognostic anoikis-related lncRNAs using the univariate regression analysis (p < 0.05); C 
distribution of the LASSO coefficients of the selected anoikis-related lncRNAs; D generalized cross-validation curve of the optimal parameter (λ) 
selection based on the minimum criteria; E relationship between the seven prognostic lncRNAs and anoikis-related genes

https://tcia.at/home
https://tcia.at/home
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Fig. 2  (See legend on previous page.)
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the variables included in the training set were decreased 
with the LASSO Cox regression analysis technique by 
introducing the lambda value (Fig. 2C, D). Finally, seven 
lncRNAs (AC015878.1, CYTOR, EMSLR, LINC01503, 
LINC02084, RAB11B-AS1, Z97200.1) were detected 
for constructing the prognostic risk model. Here, every 
sample was allotted a risk score using the corresponding 
coefficients (Table 2). The association between the seven 
lncRNAs and anoikis-related genes is shown in Fig. 2E.

Assessing the risk model integrating seven anoikis‑related 
lncRNAs
HNSCC patients were categorized into two risk groups 
with the help of a median risk score that was computed 
using the anoikis-related lncRNA model. We plotted the 
risk curves and scatter plots to show the distribution 
and OS rates of HNSCC patients included in the train-
ing, validation, and entire data sets, respectively. The 
heatmap implied that the high-risk HNSCC patients 
in the different data sets showed an upregulation in the 
CYTOR, EMSLR, LINC01503, and AC015878.1 expres-
sion levels (Figs. 3A–C). The findings of the K–M curves 
implied that the low-risk patients showed a longer OS 
duration than the high-risk patients in the training set 
(Fig. 3D, p < 0.001), validation set (Fig. 3E, p = 0.021), and 
entire data set (Fig. 3F, p < 0.001). Time-dependent ROC 
analysis showed the AUC values of the risk score in the 
training cohort, validation cohort, and entire cohort, 
respectively (Fig. 3G–I).

Determining the independent prognosis‑predictive value 
of the risk model
The probable predictive value of anoikis-related lncRNA 
risk model had been preliminarily assessed using the 
training and validation sets, however, the entire data 
set was employed for the comprehensive and accurate 
analysis. PCA analysis was employed for visualizing the 
distribution of HNSCC patients, and the findings indi-
cated that the anoikis-related lncRNA signature could 

help in differentiating the HNSCC patients depending on 
their risk score values (Fig.  4). The ROC curves at 1, 3, 
and 5 years indicated that the risk model exhibited bet-
ter results compared to those displayed by other clinical 
prognostic indicators, like gender, age, grade, and clini-
cal stage (Fig.  5A–C). C-index analysis implied that the 
risk score exhibited better prognostic accuracy compared 
to that displayed by other clinical factors (Fig. 5D). Deci-
sion curve analysis implied that the risk model presented 
the optimal clinical benefit in comparison to gender, age, 
grade, and clinical stage (Fig. 5E). In addition, Cox regres-
sion analyses were conducted and it was seen that the 
proposed risk model can be employed as the independ-
ent predictive factor for HNSCC [univariate HR = 2.035, 
95%CI = 1.535–2.698 (Fig.  5F); multivariate HR = 1.981, 
95%CI = 1.493–2.628 (Fig.  5G); p < 0.001]. K–M analysis 
of clinical subgroup characteristics indicated that low-
risk HNSCC patients exhibited a significantly better OS 
value compared to high-risk patients (Fig.  5H; p < 0.05). 
Moreover, low-risk HNSCC patients displayed longer 
DSS (p < 0.001, Fig. 6A) and PFS (p < 0.001, Fig. 6D) dura-
tions in comparison to those presented by high-risk 
patients. Further analyses implied that the proposed risk 
model can serve as an independent prognosis-predictive 
factor for DSS and PFS (univariate, Fig. 6B, E; multivari-
ate, Fig.  6C, F; p < 0.001). We developed a nomogram 
depending on the risk scores and clinical parameters 
like age, metastasis, gender, T stage, grade, and N stage, 
for predicting the 1-, 3-, and 5-year OS rates of HNSCC 
patients (Fig. 7A). Time-dependent ROC curves revealed 
that the proposed nomogram presented a good survival 
prediction using AUC values > 0.5 (1 year: 0.675; 3 years: 
0.696; 5 years: 0.651) (Fig. 7B). Furthermore, the calibra-
tion curves revealed that the predicted line was next to 
the 1-, 3-, and 5-year ideal lines (ideal curve) (Fig. 7C).

Correlation of the TME, infiltration levels of immune cells, 
and risk scores
Here, we employed the ESTIMATE algorithm for assess-
ing the link between the TME status and risk score 
among HNSCC patients. The findings implied that low-
risk patients showed significantly higher immune scores 
than high-risk patients (Fig.  8A, B). This phenotype 
implied that the risk scores might be reversely linked 
to the immune status. Here, we conducted the ssGSEA 
analysis and the resulting findings implied that the 
low-risk patients showed a higher enrichment in their 
checkpoint, inflammation-promoting, human leuko-
cyte antigen (HLA), T-cell co-inhibition, cytolytic activ-
ity, and T-cell co-stimulation pathways (Fig. 8A, C). We 
also employed the CIBERSORT algorithm to quantify the 
relative proportion of 22 tumor-infiltrating immune cells 
related to risk scores in every HNSCC patient (Fig. 8D). 

Table 2  Coefficients of seven anoikis-related lncRNAs used in 
the risk model

LncRNA Coefficient

CYTOR 1.076602309

Z97200.1 − 1.047843038

RAB11B-AS1 − 0.725763181

LINC02084 − 0.837969986

EMSLR 0.5142609

LINC01503 0.462273641

AC015878.1 0.8283574
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It was observed that low-risk patients had a high infiltra-
tion level of CD8 T cells, follicular helper T cells, plasma 
cells, resting dendritic cells, resting mast cells, and regu-
latory T cells than high-risk patients (Fig. 8E).

Impact of the risk model on patient response 
to chemotherapy and immunotherapy
The violin plots that were presented using the IPS values 
denoted that low-risk patients exhibited a good response 

to the treatment strategy using either a programmed 
cell death-1 (PD-1) inhibitor (p = 0.0034, Fig.  9A) or a 
cytotoxic T-lymphocyte associated protein 4 (CTLA4) 
inhibitor alone (p = 0.0018, Fig.  9B) and the combina-
tion of PD-1 and CTLA4 inhibitors (p = 0.0018, Fig. 9C). 
Thus, it could be concluded that low-risk patients exhib-
ited a good response to immune checkpoint inhibitors. 
Furthermore, we compared the gene expression lev-
els of 13 common ICB genes between both risk groups. 

Fig. 3  Assessment of prognostic values in the training, validation, and entire data sets. Comparison of the OS status of HNSCC patients with varying 
risk scores, and heatmap depicting the anoikis-related lncRNA signature in A training, B validation, and C entire data sets. K–M curves showed 
the OS of both the risk HNSCC groups in D training (log-rank, p < 0.001), E validation (log-rank, p = 0.021), and F entire sets (log-rank, p < 0.001). The 
AUC values for the time-dependent ROC curves depict the OS prediction values for G training, H validation, and I entire cohorts
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The findings indicated that except for HAVCR2, TNF, 
CD274, and TBX2 genes, expression levels of the remain-
ing 9 immune-associated genes (IDO1, CD8A, GZMB, 
GZMA, PRF1, LAG3, IFNG, CTLA4, and PDCD1) were 
significantly elevated in the low-risk patients (Fig.  9G) 
than the higher risk group. Furthermore, we derived the 
IC50 of each HNSCC patient using the pRRophetic algo-
rithm to identify the link between the chemotherapy 
response and risk scores. The high-risk patients displayed 
significantly low IC50 values for gemcitabine (p < 0.001, 
Fig.  10A), docetaxel (p = 0.02, Fig.  10B), and cispl-
atin (p = 0.018, Fig.  10C), while patients in both groups 

showed no significant difference for paclitaxel (p = 0.19, 
Fig.  10D). These results implied that high-risk patients 
showed a higher sensitivity to gemcitabine, docetaxel, 
and cisplatin drugs.

Correlation between the risk model and TMB in the HNSCC 
patients
To assess whether somatic mutations are relevant to the 
risk model, we compared the mutation frequencies of the 
genomic genes in the two groups. The high-risk patients 
harbored more somatic mutations compared to low-risk 
patients (94.76% vs. 89.88%). The waterfall plots displayed 

Fig. 4  PCA analysis of the data derived from the entire cohort. The results of the PCA analyses indicated that the D anoikis-related lncRNA signature 
could be differentiated based on the risk status of HNSCC patients compared to the A whole genome, B anoikis-related gene and C anoikis-related 
lncRNA



Page 10 of 19Deng et al. European Journal of Medical Research          (2023) 28:548 

the top fifteen mutated genes in both risk groups, and 
the findings revealed that low-risk HNSCC patients 
displayed a lower propensity for TP53 mutations than 
high-risk patients (57% vs. 74%, respectively) (Fig.  11A, 
B). Here, we sorted the HNSCC patients into the high- 
and low-TMB categories depending on TMB values, for 
assessing the influence of TMB on OS rates of HNSCC 
patients. The data displayed by both groups were used 
for carrying out log-rank tests. The findings of the K–M 
curves indicated that higher TMB patients showed a 
worse prognosis (p = 0.007, Fig.  11C). In addition, the 
results of combined TMB and risk scores analyses also 
indicated that the HNSCC patients with low TMB scores 
displayed better OS duration compared to low- or high-
risk patients (p < 0.001, Fig. 11D).

Functional analysis of the anoikis‑related lncRNA risk 
model
Here, we also identified the DEGs between the two risk 
groups and plotted them on a volcano diagram (Fig. 12A). 
GO analysis of the DEGs showed significant enrichment 
of many immune-associated biological processes, such as 
B-cell-mediated immunity, lymphocyte-mediated immu-
nity, immune response, by circulating immunoglobulin, 
mediated humoral immune response, and complement 
activation classical pathways (Fig.  12B). The chord dia-
gram further confirmed that DEGs were more enriched 
in immune-associated GO terms (Fig.  12C). KEGG 
pathway analysis suggested that the above DEGs were 
significantly enriched in the cardiomyocyte-associated 
pathways (Fig. 12D, E). The findings of GSEA enrichment 
analysis implied that the low-risk patients displayed a 
significant enrichment of immune-associated pathways, 

Fig. 5  Predictive value depicted by the proposed risk model in comparison to clinicopathologic factors and subgroup analysis. The findings 
of the ROC curves of prognostic accuracy were used for comparing the risk score with clinicopathologic factors in the entire set for A 1 year, B 
3 years, and C 5 year. D C-index was employed for comparing the prognostic accuracy of clinical factors and risk score. E Decision curves depicted 
the clinical advantages described by the risk model using the entire cohort. F Univariate and G multivariate regression analysis of risk scores 
in the entire set. H Subgroup analysis of the K–M survival curve depends on factors like gender, age, histopathological grade, and clinical stage
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like intestinal immune network for IGA production, Fc 
epsilon RI signaling pathway, B cell receptor signaling 
pathway, and primary immunodeficiency. However, the 
high-risk patients were significantly enriched in cancer-
associated pathways like the pentose phosphate pathway, 
focal adhesion, ECM receptor interaction, and the con-
trol of the actin cytoskeleton (Fig. 12F).

Discussion
Anoikis is an important programmed cell death process 
that prevents the re-adhesion and growth of the shed 
cells or attachment of the shed cells to an incorrect loca-
tion during the body’s development [18]. However, in 
many cancers, anoikis resistance is recognized as a pri-
mary mechanism for tumor invasion and migration, 
metastasis, and treatment resistance [19–21]. HNSCC is 
an insidious onset and highly invasive neoplasm, wherein 
a majority of the patients were diagnosed with metastatic 
carcinoma. It showed a low 5-year OS rate because of the 
lack of an effective early diagnosis and drug resistance 
strategy [1]. Thus, the construction of anoikis-related 
predictive models may help in effectively guiding the 
prognosis and treatment of HNSCC patients.

Herein, we construct a risk model consisting of 
seven anoikis-related lncRNAs (AC015878.1, CYTOR, 
EMSLR, LINC01503, LINC02084, RAB11B-AS1, 
Z97200.1) based on the data presented by the Cox and 
LASSO regression analyses conducted for predicting 
the prognosis, immune response, immunotherapy and 
chemotherapy response for HNSCC patients. More 

specifically, AC015878.1 was seen to be a member of the 
stemness-related model for HNSCC [22], while EMSLR 
and Z97200.1 were seen to be important components 
of the prognostic signature used for bladder cancer and 
kidney renal clear cell carcinoma, respectively [23, 24]. 
EMSLR regulated the cell proliferation and differentia-
tion by repressing the promoter activity of LncPRESS1 
in lung cancer cell [25]. LINC01503 could promoted 
the proliferation, migration, and invasion in esophageal 
squamous cell carcinoma (ESCC) cell lines. It disrupted 
the interaction of EBP1 and the subunit of PI3K, and 
then increased the AKT signaling [26]. Furthermore, 
LINC02084 was used as a risk predictor in kidney renal 
clear cell carcinoma, colon cancer, and hepatocellular 
carcinoma [27–29]. Moreover, LINC01503 could facili-
tate cell migration, infiltration, and epithelial–mesenchy-
mal transition in cholangiocarcinoma cells [30], whereas 
CYTOR was up-regulated and significantly associated 
with the poor prognosis of the cancer patients[31], In 
HNSCC, CYTOR inhibited cell apoptosis following 
treatment with the chemotherapeutic drug diamminedi-
chloroplatinum (DDP) [32]. In addition, RAB11B-AS1 
was observed to be important for metastasis and poor 
prognosis in tumor cells [33, 34]. These studies suggested 
that the 7 anoikis-related lncRNAs could be advanta-
geous in the construction of prognostic models. Further 
analysis of these lncRNAs could present novel targets for 
developing effective strategies for tumor therapy.

This model helped in categorizing the HNSCC patients 
into both risk groups on the basis of their median risk 

Fig. 6  Risk model for DSS and PFS prediction. A K–M curves depicted the DSS values in both risk groups (log-rank, p < 0.001). B Univariate and C 
multivariate regression analyses of DSS for the proposed risk model. D K–M curves depicted the PFS of both risk groups (log-rank, p < 0.001). E 
Univariate and F multivariate regression analysis of PFS for the risk model
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scores. This prognostic anoikis-related lncRNA signa-
ture was seen to be a better discriminator for HNSCC 
patients compared to the whole genome, anoikis-related 
genes, and anoikis-related lncRNAs. Therefore, we con-
ducted a comprehensive analysis and evaluation of the 
proposed risk model for forecasting the prognosis and 
OS of HNSCC patients. K–M curve analysis showed 
that low-risk patients showed significantly better OS, 
DSS, and PFS values than those displayed by high-risk 
patients. K–M analysis of the clinical subgroup char-
acteristics stated that low-risk patients showed signifi-
cantly higher OS values. Furthermore, the results of the 
Cox regression analyses highlighted the fact that the pro-
posed risk model could serve as an independent prog-
nosis-predictive indicator in HNSCC patients using the 

data acquired from the training, validation, and entire 
sets. The proposed risk score-based nomogram offered 
findings that validated its predictive value for HNSCC 
patients. These results highlighted the effective role 
played by the anoikis-related lncRNA signature in antici-
pating the prognosis and OS of patients, suggesting that 
the proposed risk model complemented the clinicopatho-
logical characterization methods.

The Food and Drug Administration (FDA) proposed 
the application of TMB as a clinical biomarker for deter-
mining the ICB response in solid tumors, however, very 
few studies determined the predictive power of TMB 
in HNSCC patients [35]. Therefore, we determined the 
link between TMB and the risk model in HNSCC tis-
sues based on mutation data derived from TCGA. The 

Fig. 7  Constructing a nomogram depending on the risk scores and clinical data. A Signature-based nomogram was used to predict the probability 
of 1-, 3- and 5-year OS. B AUC values of time-dependent ROC curves for predicting the OS values. C Calibration plots of the nomogram to anticipate 
the 1-, 3-, and 5-year OS
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TMB score was computed after dividing the total sum 
of somatic mutations by size of exomes, and the find-
ings implied that the high-risk HNSCC patients showed 
a high number of somatic mutations in comparison to 
low-risk HNSCC patients, specifically for TP53. Loss 
of TP53 might influence the survival of tumors after 
radiation or chemotherapy and it could influence the 

patient’s prognosis [36]. HNSCC samples were catego-
rized into the high- and low-TMB groups on the basis 
of their median TMB scores. A high TMB score was sig-
nificantly related to poor outcomes, but it must be noted 
that low-risk HNSCC patients exhibited a better progno-
sis irrespective of their TMB score. This finding further 
indicated that the proposed risk model could act as an 

Fig. 8  Relationship between the immune cells infiltration, TME, and anoikis-related lncRNA signature. A Heatmap shows the immune score, 
ESTIMATE score, stromal score, tumor purity, and immune-associated pathway in both risk groups. B Comparison of TME scores in both the risk 
groups using the ESTIMATE algorithm. C Box plot presents the comparison of 13 immune-linked functions in both risk groups. D Distribution of 22 
tumor-infiltrating immune cells in all HNSCC patients quantified using the CIBERSORT algorithm. E Violin plot shows the fraction of 22 immune cells 
in both risk groups. *p < 0.05, **p < 0.01, ***p < 0.001, ns not significant
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independent candidate for anticipating the prognosis of 
HNSCC patients.

TME contributes significantly to tumor progression, 
especially during tumor initiation and metastasis, since 
the infiltration of the immune cells around the malignant 
tissues was sensitive to detecting cancer cells and inhib-
iting their growth [37]. Earlier studies have noted that 
high immune cell infiltration levels and TME scores were 
linked to the good prognosis of many cancer patients 
[38–40]. The TME of HNSCC is distinguished by abnor-
mal changes in immune cell populations, pro-inflamma-
tory cytokines, and immune checkpoint genes [41].

We observed that high-risk HNSCC patients dis-
played a significantly low immune score in comparison 
to the low-risk score patients. Furthermore, the low-risk 
patients exhibited a significantly higher infiltration level 
of follicular helper T cells, plasma cells, CD8 T cells, rest-
ing dendritic cells, regulatory T cells, and resting mast 
cells, and they also showed an enrichment in the check-
point, cytolytic activity, HLA, pro-inflammatory, T-cell 
co-stimulation, and T-cell co-inhibition pathways. In 
addition, the results of KEGG, GO, and GSEA functional 
analyses also validated the immune-linked pathways 

included in the proposed risk model, which enabled us to 
understand the probable role played by the risk model in 
anticipating the effect of immunotherapy treatment dur-
ing clinical studies.

HNSCC is an immunosuppressive disease, however, 
the development of immunotherapy for HNSCC has pro-
gressed rapidly in the past few years [42, 43]. The FDA 
approved the application of several immune checkpoint 
inhibitors, such as anti-PD-1 or programmed cell death 
1-ligand 1 (PD-L1) antibodies, which include nivolumab 
and pembrolizumab, durvalumab and atezolizumab for 
treating the recurrence/metastasis of HNSCC [44]. A few 
other immune therapies which included the CTLA4 and 
IDO-1 inhibitors were also evaluated for clinical prac-
tice [45]. Though the above treatment strategies showed 
significant efficacy, very few HNSCC patients benefit-
ted from immunotherapy during clinical practice [46]. 
Hence, novel prognostic biomarkers need to be identified 
to determine the immunotherapy response for optimiz-
ing the therapeutic strategies. This study noted a signifi-
cant increase in the IPS values for anti-PD1, anti-CTLA4, 
and the combined anti-PD1 and anti-CTLA4 immuno-
therapy in low-risk patients. The expression levels of key 

Fig. 9  Impact of anoikis-related lncRNA signature on immunotherapy response. Correlation of the anoikis-related lncRNA signature and IPS 
for A anti-PD1 immunotherapy, B anti CTLA4 monotherapy and C combined anti-PD1 with anti-CTLA4 immunotherapy. D Comparison 
of the immune-linked gene expression levels between the two risk groups
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immunomodulator or inflammatory mediator ICB genes 
such as IDO1, CD8A, GZMB, GZMA, PRF1, LAG3, 
CTLA4, IFNG, and PDCD1 were significantly elevated 
in low-risk patients. All the findings suggested that low-
risk HNSCC patients showed a high sensitivity to the 
immune checkpoint inhibitors.

Multimodal combination therapies that include radio-
therapy, surgery, and chemotherapy can act as the pri-
mary treatment strategy for advanced HNSCC patients 
with poor prognosis owing to recurrence or metastases 
[45]. Since cisplatin was first introduced in the 1970s, 
there has been an advancement in the chemotherapeutic 
strategies for HNSCC patients [47]. Hence, several cyto-
toxic anti-cancer agents, such as taxane-based anticancer 
drugs, such as docetaxel and paclitaxel, were more con-
ventionally used for HNSCC [1]. Combined treatment of 

docetaxel and cisplatin for advanced HNSCC showed a 
good response of 33–53% [48]. Based on the above data, 
we employed the pRRophetic algorithm to study the 
impact of the risk model on the response of four com-
mon anti-cancer agents, such as cisplatin, paclitaxel, 
gemcitabine, and docetaxel. A significantly low IC50 value 
was noted in the high-risk patients for gemcitabine, doc-
etaxel, and cisplatin, which indicated that these patients 
were more sensitive to chemotherapy. The above findings 
offered a theoretical basis for formulating personalized 
treatment regimens for HNSCC. If this finding is vali-
dated in a large, multi-centre clinical trial, patients could 
be accurately stratified based on their risk scores, allow-
ing physicians to tailor treatment strategies and make 
informed decisions about the use of anti-cancer agents. 
On the other hand, by identifying those individuals at 

Fig. 10  Effect of anoikis-related lncRNA signature on chemotherapy response. High-risk HNSCC patients showed significantly low IC50 values for A 
gemcitabine, B docetaxel, C cisplatin; and D paclitaxel
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higher risk of cancer progression or recurrence, physi-
cians would be able to intervene more aggressively with 
targeted therapies, thereby increasing the chances of suc-
cessful treatment outcomes.

Although there are some prognostic models for 
HNSCC, only three anoikis-related models have been 
reported [9, 49, 50]. Compared with these studies, we 
constructed the anoikis-related prognostic model from 
the perspective of lncRNA. Since lncRNA has been 
proven to have good application in biomarkers for many 
diseases, the anoikis-related lncRNA signature may 
be more capable of assessing the prognostic value in 
HNSCC. However, this study presented a few limitations. 
First, these sets may not represent the entire HNSCC 
patient population. Even though we integrated an addi-
tional multi-center set, this study remains an in-depth 

analysis of HNSCC samples from public databases using 
bioinformatics methods, it is not sufficient for use in clin-
ical practice before further studies and experiments. Sec-
ond, there could be some bias in the random allocation 
of samples into the training and validation sets. In addi-
tion, the mechanisms of seven prognostic anoikis-related 
lncRNAs in HNSCC require further investigation.

In conclusion, the risk model that was designed using 
seven prognostic anoikis-related lncRNAs could antici-
pate the prognosis of HNSCC patients and can be 
employed as a good independent predictive indicator 
for HNSCC patients. Furthermore, this risk model could 
help in developing immunotherapeutic and chemothera-
peutic strategies for treating HNSCC patients. It can help 
the clinicians develop personalized and precise treatment 
strategies for HNSCC.

Fig. 11  Relationship between the proposed risk model and TMB in HNSCC patients. Waterfall chart depicts the 15 top mutation genes in A 
high-risk and B low-risk patients. C K–M curves presented the OS values in both the TMB groups (log-rank, p = 0.007). D OS values of the HNSCC 
patients that were categorized as per the TMB states and risk scores (log-rank, p < 0.001)
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Fig. 12  Functional analysis of anoikis-related lncRNA signature. A DEGs determined in both risk groups were presented using Volcano plots. The 
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