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LncRNA MAFG‑AS1 is involved in human 
cancer progression
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Abstract 

Long noncoding RNAs (lncRNAs) refer to a type of non-protein-coding transcript of more than 200 nucleotides. 
LncRNAs play fundamental roles in disease development and progression, and lncRNAs are dysregulated in many 
pathophysiological processes. Thus, lncRNAs may have potential value in clinical applications. The lncRNA, MAF BZIP 
Transcription Factor G (MAFG)-AS1, is dysregulated in several cancer, including breast cancer, lung cancer, liver cancer, 
bladder cancer, colorectal cancer, gastric cancer, esophagus cancer, prostate cancer, pancreatic cancer, ovarian cancer, 
and glioma. Altered MAFG-AS1 levels are also associated with diverse clinical characteristics and patient outcomes. 
Mechanistically, MAFG-AS1 mediates a variety of cellular processes via the regulation of target gene expression. There-
fore, the diagnostic, prognostic, and therapeutic aspects of MAFG-AS1 have been widely explored. In this review, we 
discuss the expression, major roles, and molecular mechanisms of MAFG-AS1, the relationship between MAFG-AS1 
and clinical features of diseases, and the clinical applications of MAFG-AS1.
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Introduction
Cancer represents a group of heterogeneous diseases, 
which involve uncontrolled growth of mutated cells, 
invasion of adjacent organs, and distant metastasis 
[1–4]. The application of discoveries and innovations in 
molecular cancer therapies has significantly improved 
patient prognoses [5–9]. However, the high incidence 
and mortality of cancer are still a public health concern 
[10–13]. New molecular mechanisms and strategies are 
still needed to improve therapeutic responses and clinical 
outcomes [14–18].

Along with advances in high-throughput sequenc-
ing technology, an increasing population of noncoding 
RNAs (ncRNAs) has been discovered [19–22], including 
long noncoding RNAs (lncRNAs) [23–28]. LncRNAs are 
transcripts of at least 200 nucleotides that do not have 
protein-coding capability [23, 29–31]. LncRNA dysreg-
ulation is involved in diverse human diseases, includ-
ing neurological diseases, cardiovascular diseases, and 
cancers [32–34], and diverse cellular processes [35–38], 
including cell proliferation, differentiation, apoptosis, and 
migration. In addition, lncRNAs regulate the expression 
of protein-coding genes and, thus, foster the progres-
sion of diseases or tumors. Given these properties, a large 
proportion of lncRNAs are important in disease diagno-
sis, prognosis, and therapeutic targets [39–42].

The lncRNA MAF BZIP Transcription Factor G 
(MAFG)-AS1, located on human chromosome 17q25.3, 
was recently identified as an oncogenic lncRNA with 
a transcript size of 1895  bp. MAFG-AS1 expression is 
aberrant in diverse diseases, including breast cancer 
[43–49], lung cancer [50–52], liver cancer [53–58], blad-
der cancer [59–63], colorectal cancer [64–66], gastric 
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cancer [67, 68], esophagus cancer [69], prostate cancer 
[70], pancreatic cancer [71], ovarian cancer [72], glioma 
[73], periodontitis [74], and coronary artery disease [75]. 
MAFG-AS1 levels are also strongly associated with clin-
icopathological characteristics and patient outcomes, 
such as tumor size, clinical stage, distant metastasis, 
overall survival (OS), and disease‐free survival (DFS). 
Experimental studies demonstrate the involvement of 
MAFG-AS1 in disease development via a series of biolog-
ical processes, such as cell proliferation, invasion, glyco-
lysis, metastasis, and drug sensitivity. MAFG-AS1 affects 
cancer progression by regulating target gene expression.

In the present review, we discuss the expression, related 
clinical features, and biological functions of MAFG-AS1 
in diverse cancers. In addition, we discuss the underlying 
mechanisms and clinical applications of MAFG-AS1.

Characteristics of MAFG‑AS1 in human cancers
MAFG-AS1 is dysregulated in diverse diseases, includ-
ing breast cancer, lung cancer, liver cancer, bladder can-
cer, colorectal cancer, gastric cancer, esophagus cancer, 
prostate cancer, pancreatic cancer, ovarian cancer, and 
glioma (Fig.  1). High MAFG-AS1 expression corre-
lates with unfavorable clinical features and prognosis, 
including lymph node metastasis, histological grade, 
clinical stage, distant metastasis, OS, and DFS (Table 1). 

Importantly, MAFG-AS1 often functions as a sponge to 
interfere with microRNA regulation of gene expression, 
which affects many biological processes, including cell 
proliferation, invasion, glycolysis, metastasis, and drug 
sensitivity (Table 2). In this section, we include a compre-
hensive description of the relationship between MAFG-
AS1 expression and clinical features of diverse cancers.

Breast cancer
MAFG-AS1 overexpression in breast cancer tissue 
and cells (MCF7, MCF10, SUM149, HCC1937, BT474, 
Hs578T, SK-BR-3, MDA-MB-468, MDA-MB-231, and 
T47D) [43–49] revealed that MAFG-AS1 levels positively 
correlate with tumor size and ki-67 index [48]. MAFG-
AS1 participates in cancer progression via enhanced cell 
proliferation, invasion, and metastasis and suppression 
of cell apoptosis and autophagy. Studies using xenograft 
models confirm the pro‐oncogenic roles of MAFG-AS1 
in tumor growth and lung metastasis [44, 46–48].

Lung cancer
MAFG-AS1 is also upregulated in lung cancer tissues and 
H1373, H1975, H1650, HCC827, A549, PC-9, and Calu-3 
cells [50–52]. High MAFG-AS1 levels are associated with 
poor prognosis in patients with lung cancer. MAFG-
AS1 increases cell proliferation, migration, invasion, and 

Fig. 1  The involvement of MAFG-AS1 in human diseases. MAFG-AS1 is dysregulated in breast cancer, lung cancer, liver cancer, bladder cancer, 
colorectal cancer, gastric cancer, esophagus cancer, prostate cancer, pancreatic cancer, ovarian cancer, and glioma
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tumor‐forming and metastasis abilities to advance lung 
cancer [50–52].

Liver cancer
MAFG-AS1 upregulation in liver cancer tissues and 
Huh7, HepG2, LM3, HCCLM3, Hep3B, and MHCC97-H 
cells is associated with shorter OS [53–58]. MAFG-AS1 
exerts its pro-cancer roles via increased cell proliferation, 
migration, invasion, drug resistance, and tumor angio-
genesis [54–56, 58].

Bladder cancer
MAFG-AS1 is upregulated in bladder cancer cells 
(HT01197, 5637, BIU87, EJ, RT4, J82, T24, HT-1376, 
UMUC3, and SVHUC1) and tissues [59–63]. MAFG-
AS1 upregulation correlates with aggressive prognosis, 
shorter DFS and OS, and advanced clinical and TMN 
stages. Both in  vivo and in  vitro experimental stud-
ies demonstrate that the upregulation of MAFG-AS1 
increases proliferation, migration, and invasion, which 
contribute to the development of bladder cancer.

Table 1  The expression and clinical characteristics of MAFG-AS1 in cancers

Disease type Expression Clinical characteristics Refs.

Breast cancer Upregulated Tumor size, and ki-67 [43–49]

Lung cancer Upregulated OS [50–52]

Liver cancer Upregulated OS [53–58]

Bladder cancer Upregulated DFS, OS, clinical stages, and TMN stages [59–63]

Colorectal cancer Upregulated Depth of invasion, TNM stage, OS, and DFS [64–66]

Gastric cancer Upregulated Clinical stage, depth of invasion, lymph node metastasis, distant 
metastasis, and OS

[67, 68]

Esophageal cancer Upregulated OS [69]

Prostate cancer Upregulated – [70]

Pancreatic cancer Upregulated – [71]

Ovarian cancer Upregulated Tumor stage, size, lymph node metastasis, and OS [72]

Glioma Upregulated – [73]

Table 2  The roles and mechanisms of MAFG-AS1 in cancers

Disease type Cell lines Functions Related mechanisms Refs.

Breast cancer MCF7, MCF10, SUM149, HCC1937, 
BT474, Hs578T, SK-BR-3, MDA-MB-468, 
MDA-MB-231, and T47D

Cell proliferation, invasion, metastasis, 
apoptosis, and autophagy

miR-3612, FKBP4, miR-574-5p, SOD2, 
miR-150-5p, MYB, miR-339-5p, CDK2, 
miR-339-5p, MMP15, miR-3196, 
TFAP2A, JAK2, STAT3, and STC2

[43–49]

Lung cancer H1373, H1975, H1650, HCC827, A549, 
PC-9, and Calu-3

Cell proliferation, migration, and inva-
sion

miR-339-5p, MMP15, miR-744-5p, 
MAFG, miR-3196, and SOX12

[50–52]

Liver cancer Huh7, HepG2, LM3, HCCLM3, Hep3B, 
and MHCC97-H

Cell proliferation, migration, invasion, 
and drug resistance

miR-3196, STRN4, E2F1, MAFG, miR-
3196, OTX1, and miR-6852

[53–58]

Bladder cancer HT01197, 5637, BIU87, EJ, RT4, J82, T24, 
HT-1376, UMUC3, and SVHUC1

Cell proliferation, migration, and inva-
sion

miR-125b-5p, SphK1, HuR, PTBP1, 
miR-143-3p, COX-2, miR-143-3p, 
and SERPINE1

[59–63]

Colorectal cancer HCT116, HT29, SW1116, SW480, 
and LoVo

Cell migration, proliferation, invasion, 
and glycolysis

miR-147b, NDUFA4, miRNA-149-3p, 
and HOXB8

[64–66]

Gastric cancer MKN-45, AGS, and SGC7901 Cell proliferation, migration, and inva-
sion

miR-505, and PLK1 [67, 68]

Esophageal cancer EC9706, EC109, KYSE30, and KYSE150 Cell proliferation, migration, invasion, 
and aerobic glycolysis

miR-765, and PDX1 [69]

Prostate cancer DU145, and PC-3 Cell proliferation and invasion miR-3196, and NFIX [70]

Pancreatic cancer Capan 1, CFPAC-1, SW1990, and PANC-
1

Cell proliferation and migration NFKB1, and IGF1 [71]

Ovarian cancer A2780, Caov-3, RMG-I, Caov-4, 
and CoC1

Cell invasion and migration – [72]

Glioma U87, and U-118 Cell proliferation miR-34a [73]



Page 4 of 8Li et al. European Journal of Medical Research          (2023) 28:497 

Colorectal cancer
MAFG-AS1 levels are significantly increased in colorec-
tal cancer tissues and HCT116, HT29, SW1116, SW480, 
and LoVo cells [64–66]. High MAFG-AS1 expression is 
closely related to invasion depth, advanced TNM stage, 
and shorter OS and DFS [65, 66]. MAFG-AS1 also facili-
tates cell migration, proliferation, invasion, glycolysis, 
and tumor growth to promote colorectal cancer [64, 66].

Gastric cancer
MAFG-AS1 is overexpressed in gastric cancer MKN-45, 
AGS, and SGC7901 cells and tissues. MAFG-AS1 upreg-
ulation is associated with deteriorative clinical stage, 
depth of invasion, lymph node metastasis, distant metas-
tasis, and unfavorable OS [67, 68]. MAFG-AS1 also plays 
a pro-cancer role in gastric cancer through the promo-
tion of cell proliferation, migration, and invasion.

Other cancers
MAFG-AS1 is upregulated in esophageal cancer tissues 
and cells (EC9706, EC109, KYSE30, and KYSE150) and 
is associated with shorter OS. MAFG-AS1 enhances cell 
proliferation, migration, invasion, and aerobic glycolysis 
and, thus, exerts cancer-promoting effects in esophageal 
cancer [69]. In prostate cancer, MAFG-AS1 is overex-
pressed in tissues and DU145 and PC-3 cells and partici-
pates in cell proliferation and invasion [70]. MAFG-AS1 
levels are elevated in pancreatic cancer tissues and Capan 
1, CFPAC-1, SW1990, and PANC-1 cells and strengthen 
cancer development via enhanced cell proliferation and 
migration [71]. Similarly, increased MAFG-AS1 in ovar-
ian cancer A2780, Caov-3, RMG-I, Caov-4, and CoC1 
cells tightly correlates with aggressive tumor stage, size, 
lymph node metastasis, and poor outcomes. MAFG-AS1 
contributes to ovarian tumor progression via enhanced 
invasion and migration [72]. MAFG-AS1 is upregulated 
in glioma tissues, and U87 and U-118 cells and is pro-
proliferative [73].

The pro‑oncogenic mechanisms of MAFG‑AS1 
in human cancers
MAFG-AS1 is involved in the development of vari-
ous cancers and governs numerous biological processes 
through diverse mechanisms, including cell proliferation, 
migration, invasion, apoptosis, autophagy, drug resist-
ance, and glycolysis (Table 2). This section briefly intro-
duces the mechanisms for MAFG-AS1 effects in human 
cancers.

The impaired regulation of cell proliferation, via defec-
tive regulatory pathways, mutations in critical genes, 
and environmental factors [76–80], contributes to tumor 
formation. Excessively increased migratory and invasive 
capacities of cancer cells promote cancer progression 

and higher mortality rates [81–85]. Moreover, energy 
metabolism also affects the pathogenesis of cancer [3, 86, 
87]. Therefore, understanding the molecular mechanisms 
that govern cell processes is crucial for subsequent can-
cer management [88–91]. MAFG-AS1 affects cell prolif-
eration and migration through diverse mechanisms. For 
example, MAFG-AS1 enhances cell proliferation, inva-
sion, metastasis, and glycolysis to facilitate breast cancer 
development through multiple mechanisms. MAFG-AS1 
plays pro-oncogenic roles through the miR-3612/FKBP4, 
miR-574-5p/SOD2, miR‑150‑5p/MYB, miR-339-5p/
CDK2, miR-339-5p/MMP15, and miR-3196/TFAP2A/
JAK2/STAT3 signaling pathways [43, 45–49] (Fig.  2). 
MAFG-AS1 also stabilizes STC2 expression to promote 
breast cancer [44]. MAFG-AS1 increases cell prolifera-
tion, migration, and invasion of lung cancer cells through 
the miR-339-5p/MMP15, miR-744-5p/MAFG, and miR-
3196/SOX12 axes [50–52]. In liver cancer, MAFG-AS1 
sponges miR-3196 to increase STRN4 expression, inter-
acts with E2F1 to enhance MAFG levels, combines with 
miR-3196 to elevate OTX1 transcription, or decreases 
miR-6852 to increase cell proliferation, migration, and 
invasion [54–56, 58]. MAFG-AS1 promotes the prolifera-
tion, migration, and invasion of bladder cancer through 
miR-125b-5p/SphK1, HuR/PTBP1, miR-143-3p/COX-
2, and miR-143-3p/SERPINE1 pathways [59, 60, 62, 63]. 
MAFG-AS1 may also contribute to colorectal cancer cell 
migration, proliferation, invasion, and glycolysis [64, 66] 
by binding to miR-147b to activate NDUFA4 or absorb-
ing miRNA-149-3p to increase HOXB8 expression. 
In addition, MAFG-AS1 upregulates PLK1 by spong-
ing miR-505 to increase gastric cancer cell prolifera-
tion migration, and invasion [67]. In esophageal cancer, 
MAFG-AS1 increases cell proliferation, migration, inva-
sion, and aerobic glycolysis through interactions with 
miR-765 and the subsequent upregulation of PDX1 [69]. 
MAFG-AS1 also sponges miR-3196 to increase NFIX 
expression and enhance pancreatic cancer cell prolifera-
tion and migration [71]. In ovarian cancer, MAFG-AS1 
upregulates IGF1 expression by interacting with NFKB1 
to facilitate cell invasion and migration [72]. MAFG-AS1 
elevates the proliferation of gliomas by decreasing the 
expression of mature miR-34a [73].

Clinical applications of MAFG‑AS1 in human 
cancers
Despite the continuous strides in disease prevention and 
treatment, the global burden of cancer remains heavy 
[92–95]. In this context, new potent and safe molecules 
are needed to develop combination therapy strategies.

As the roles of MAFG-AS1 in diverse cancers are 
revealed, its clinical value has received increased atten-
tion. Multiple studies show the overexpression of 
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MAFG-AS1 in tissues and cells and its pro-oncogenic 
roles in many cancers. MAFG-AS1 overexpression helps 
distinguish between cancerous and normal tissues and 
improves early-stage cancer diagnosis. Given the close 
association between MAFG-AS1 and diverse clinical 
features, MAFG-AS1 is a powerful prognostic tool for 
cancers. Kaplan–Meier survival curves demonstrate 
that high MAFG-AS1 levels correlate with patient’s poor 
prognoses (such as overall survival and progression free 
survival) in diverse cancers, including breast, lung, liver, 
bladder, colorectal, gastric, and esophageal cancers [52, 
53, 57, 59, 60, 63, 65, 67–69]. Univariate Cox regression 
analyses in liver and gastric cancer patients also confirm 
the significant association of MAFG-AS1 with unfavora-
ble OS [53, 57, 68]. Multivariate analyses revealed that 
MAFG‐AS1 is an independent prognostic biomarker in 
bladder, colorectal, and gastric cancers [60, 65, 68]. The 
detection of MAFG‑AS1 levels in cancer tissues and 
cells may improve the diagnosis and prognosis of several 
cancers and guide therapeutic approaches. In addition, 
recent studies suggest that MAFG‑AS1 is involved in 
important biological processes through diverse molecu-
lar mechanisms, especially the regulation of downstream 

molecules. MAFG‑AS1 knockdown slows cancer pro-
gression and is a potential novel therapy. MAFG‑AS1 
enhances cancer cell resistance to tamoxifen, which is a 
target for the treatment of breast cancer [48]. Accord-
ingly, MAFG‑AS1 has great potential in clinical applica-
tion in terms of cancer diagnosis, prognosis, and therapy. 
Molecular therapy holds great potential in the field of 
oncology, albeit with certain challenges [96].

Conclusions
As a novel tumor-related lncRNA, dysregulation of 
MAFG‑AS1 contributes to multiple human cancers, 
including breast cancer, lung cancer, liver cancer, blad-
der cancer, colorectal cancer, gastric cancer, esopha-
gus cancer, prostate cancer, pancreatic cancer, ovarian 
cancer, and glioma. Elevated MAFG‑AS1 expression 
is closely associated with diverse undesirable clinical 
characteristics and poor outcomes. Multiple experi-
mental studies also revealed that MAFG‑AS1 acts on 
a variety of targets to mediate crucial biological pro-
cesses, including cell migration, invasion, proliferation, 
energy metabolism, and drug resistance. Considering 
its attractive features in diverse cancers, MAFG‑AS1 

Fig. 2  The regulatory mechanisms of MAFG-AS1 in breast cancer progression. MAFG-AS1 plays pro-oncogenic roles in breast cancer 
through the miR-3612/FKBP4, miR-574-5p/SOD2, miR-150-5p/MYB, miR-339-5p/CDK2, miR-339-5p/MMP15, and miR-3196/TFAP2A/JAK2/STAT3 
signaling pathways and upregulates STC2 expression
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possesses wide prospects for clinical applications, 
including diagnosis, prognosis, and treatment.
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