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Abstract 

Background:  Charged particle beams from protons to carbon ions provide many significant physical benefits in 
radiation therapy. However, preclinical studies of charged particle therapy for prostate cancer are extremely limited. 
The aim of this study was to comprehensively investigate the biological effects of charged particles on prostate can‑
cer from the perspective of in vitro studies.

Methods:  We conducted a systematic review by searching EMBASE (OVID), Medline (OVID), and Web of Science 
databases to identify the publications assessing the radiobiological effects of charged particle irradiation on prostate 
cancer cells. The data of relative biological effectiveness (RBE), surviving fraction (SF), standard enhancement ratio 
(SER) and oxygen enhancement ratio (OER) were extracted.

Results:  We found 12 studies met the eligible criteria. The relative biological effectiveness values of proton and car‑
bon ion irradiation ranged from 0.94 to 1.52, and 1.67 to 3.7, respectively. Surviving fraction of 2 Gy were 0.17 ± 0.12, 
0.55 ± 0.20 and 0.53 ± 0.16 in carbon ion, proton, and photon irradiation, respectively. PNKP inhibitor and gold 
nanoparticles were favorable sensitizing agents, while it was presented poorer performance in GANT61. The oxy‑
gen enhancement ratio values of photon and carbon ion irradiation were 2.32 ± 0.04, and 1.77 ± 0.13, respectively. 
Charged particle irradiation induced more G0-/G1- or G2-/M-phase arrest, more expression of γ-H2AX, more apopto‑
sis, and lower motility and/or migration ability than photon irradiation.

Conclusions:  Both carbon ion and proton irradiation have advantages over photon irradiation in radiobiological 
effects on prostate cancer cell lines. Carbon ion irradiation seems to have further advantages over proton irradiation.
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Graphical Abstract

Abbreviations
RBE = relative biological effectiveness; SF = surviving fraction
SER = standard enhancement ratio; OER = oxygen enhancement ratio

Introduction
Globally, there are estimated to be 1,414,259 new cases 
and 375,304 deaths from prostate cancer (PCa) in 2020, 
which is the second most frequent malignancy in males 
and the fifth leading cause of cancer mortality among men 
worldwide [1]. Radiation therapy (RT) has been widely 
used to treat PCa for many years. Given that PCa con-
trol is dose-dependent, intensity-modulated RT (IMRT), 
image-guided RT and brachytherapy can result in an 
adequate dose to the prostate or prostate bed while caus-
ing less gastrointestinal and genitourinary toxicity, espe-
cially in the rectum and bladder [2–4]. Charged particle 
therapy (CPT) for PCa gained increasing attention in the 
past decade because of its superior physical and biological 
properties. Several studies have shown a reduced radia-
tion toxicity, lower risk of secondary primary tumor and 
an improved biochemical-free survival (also known as 
biochemical disease-free survival) compared with IMRT 
[5–14]. In these studies, despite the lack of high-quality 
randomized controlled trials, existing data suggested that 
CPT exhibited great potential for sparing normal tissue as 
well as excellent overall survival rate and local control rate 
[15]. CPT may become a promising approach to treat PCa 
someday in the years to come.

The physical properties of carbon ions and pro-
tons are quite similar. With the presence of depth-dose 

distribution, also known as the Bragg peak, CPT can 
give the maximum energy to the surroundings near the 
stop (cancer part) [16]. In addition to accommodate the 
tumor volume, a spread-out Bragg peak (SOBP) is also 
produced. Carbon ions exhibit less lateral scattering and 
longitudinal straggling than protons, but they have a tail 
of light fragments beyond the Bragg peak, and nuclear 
fragmentation causes a drop in dose  in the plateau area 
[17]. As for the biological properties, due to the higher 
linear energy transfer (LET) and relative biological effec-
tiveness (RBE) of carbon ions compared with protons 
and photons, they can directly cause complex damage to 
DNA molecules and cause clustered DNA double-strand 
breaks (DSBs), requiring multiple DNA repair pathways 
to resolve [18]. Additionally, as a result of this damage, 
the oxygen enhancement ratio (OER) of carbon ions is 
typically ranged between 1 and 2.5, depending on the 
LET value, whereas the OER of photons and protons is 
generally estimated to be as high as 3 [19].

Due to these particular features of charged particles, 
some in  vitro studies have focused on the radiobiologi-
cal effects of carbon ion and proton irradiation on PCa. 
However, most of these studies have different relevant 
parameters, such as charged particle type, cell line type, 
cell origin, energy, LET, SOBP, combination therapy and 
so forth. Therefore, we believe it is necessary to pool 
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these studies for further analysis. In this paper, we con-
ducted a systematic review based on published in  vitro 
studies of carbon ion or proton irradiation for PCa to 
study its biological mechanisms regarding both tradi-
tional radiobiology and molecular level.

Materials and methods
This systematic review was performed in accordance 
with the guidelines proposed by the Preferred Report-
ing Items for Systematic Reviews and Meta-Analyses 
Additional file 3 (PRISMA) 2020 statement [20]. As our 
review contained only in vitro studies and did not involve 
any human or animal studies, it did not meet the criteria 
for registration on PROSPERO website and therefore we 
were unable to register in.

Search strategy
The following electronic databases were used as our data 
sources: MEDLINE (Ovid MEDLINE(R) and Epub Ahead 
of Print, In-Process, In-Data-Review and Other Non-
Indexed Citations, Daily and Versions(R) < 1946 to Feb-
ruary 18, 2022 >), Embase (< 1974 to 2022 February 18 > , 
Ovid) and Web of Science databases (WOS, BIOSIS, KJD, 
RSCI, SCIELO). The following search terms were used: 
“heavy ion radiotherapy”, “heavy ion therapy”, “heavy ion 
radiation therapy”, “particle beam therapy”, “carbon ion 
therapy”, “carbon ion radiation therapy”, “carbon ion radi-
otherapy”, “carbon ion irradiation”, “proton therapy”, “pro-
ton radiation”, “proton irradiation”, “prostatic neoplasms”, 
“prostate cancer”, “prostatic cancer”, “prostate adenocar-
cinoma” and “prostatic adenocarcinoma”. Specific search 
strategies for each database were listed in Additional 
file 1. Furthermore, we searched Particle Irradiation Data 
Ensemble Version 3.2 (PIDE 3.2), a database including 
in  vitro data for ions and cell lines established by GSI 
(https://​www.​gsi.​de/​bio-​pide). We also screened all the 
references in the included studies to ensure no available 
publications were omitted.

Literature selection and criteria
We used the following selection criteria: (1) articles 
reporting in  vitro studies of PCa cell lines irradiated by 
carbon ion or proton beam; (2) articles reporting at least 
one of these following outcomes: (i) cell clonogenic sur-
vival; (ii) DNA damage response and repair (DDR/R) 
(e.g., cell cycle checkpoints, DSB repair, or apoptosis); 
(iii) motility, migration or invasion; (iv) OER or standard 
enhancement ratio (SER) evaluating the effect of com-
bination therapy on colony forming assay; (3) articles 
published in English. Articles not matched the selection 
criteria were excluded. Other exclusion criteria included 
the following: (1) using artificially modified cells lines; (2) 

review, editorial material, comment or conference/meet-
ing abstract; (3) pilot studies and research projects; and 
(4) full text was not available.

After we imported the retrieved articles (as several RIS 
format files from different sources) into EndNoteX9 soft-
ware, the duplicate publications were excluded automati-
cally. Two trained investigators independently did the 
literature screening by reading the titles and abstracts, 
then evaluated potential full texts and determined eli-
gibility. All conflicts were resolved by discussion with a 
senior investigator to achieve consensus.

Data extraction
After pilot testing our predefined data extraction forms, 
two trained investigators independently extracted rel-
evant data from the studies. The main contents of them 
included general characteristics (first author, year of 
publication and country), irradiation information (parti-
cle type, particle accelerator facility or institution, initial 
energy, average LET, SOBP, dose rate, and dose group), 
cell line type and origin (human or animal), RBE, survival 
fraction (SF), SER of different combinations therapy and 
OER. All conflicts were resolved by discussion with a 
senior investigator to achieve consensus.

When the article failed to specify SF, then data were 
extracted from the survival curves in published plots 
using Web Plot Digitizer Version 4.5 (https://​autom​eris.​
io/​WebPl​otDig​itizer) to convert datapoints into numeri-
cal values, or calculated by following formula:

where D is the delivered dose, α and β are fitting con-
stants representing the initial slope and the curvature of 
the survival curve if they were reported. When the arti-
cle failed to specify SER, data were extracted in the same 
way, then determined the SER by calculating the ratio of 
doses at 10% survival level (SF = 0.1) in treated and con-
trol groups (namely, SER10, but abbreviated as SER in this 
article) [21].

Risk of bias assessment
As of today, there is still no accepted standard risk of bias 
assessment tool to refer to for in vitro studies. Our team 
has established these criteria by ourselves after referring 
to some acknowledged risk-of-bias tools [22–24]. In this 
review, we refined and updated the content over the last 
version (Additional file  2: Table  S1). Two trained inves-
tigators independently assessed the risk of bias, and all 

SF = e
−(αD+βD2)

https://www.gsi.de/bio-pide
https://automeris.io/WebPlotDigitizer
https://automeris.io/WebPlotDigitizer
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conflicts were resolved by discussing with a senior inves-
tigator to achieve consensus.

Statistical analysis
All the parameters we extracted were conducted as 
descriptive statistics. The continuous data from RBE, SF, 
SER and OER were represented as the mean ± standard 
deviation or median with interquartile ranges. All analy-
ses were done using GraphPad Prism software (version 
9.3.0) and R statistical software (version 4.1.2).

Results
Search results
Our systematic search identified 7361 records were 
potentially eligible for review after 1650 duplication 
records were removed. 7326 records were excluded 
based on the screening of the titles and abstracts. Of 
the remaining 35 records, 8 failed to retrieve the full 
text because all of them were conference or meeting 
abstracts. Full texts of 27 records were read, ultimately, 
a total of 12 studies (7 for carbon ion irradiation, 4 for 

Fig. 1  PRISMA flow diagram of the systematic review. PRISMA Preferred Reporting Items for Systematic Reviews and Meta-Analyses
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proton irradiation and 1 for both) met the inclusion cri-
teria (Fig. 1).

Study characteristics
The included studies were published from 2011 to 2020, 
seven were on carbon ion irradiation [25–31], four on 
proton irradiation [32–35] and one on both [36]. These 
studies were completed in seven countries: four of them 
in Belgium [26–28, 36], three in China [30, 31, 33], and 
one each in India [25], the United Kingdom [32], Ger-
many [29], Austria [34], and the United States of America 
[35]. Almost all of the cell lines used in these studies were 
of human origin: PC-3 [25–28, 31, 33, 36], DU-145 [32, 
34, 35], LNCap [30], only one used rat origin RAT-1 cell 
line [29]. The studies varied in the initial energy, averaged 
LET, SOBP, dose groups, and dose rate used. It should be 
noted that only 4 studies reported the SOBP value [29, 
32, 35, 36], and 1 used monoenergy [33], 1 used multi-
energy but no SOBP value (carbon ion beam) [36], the 
other studies unspecified monoenergy or multi-energy. 
3 studies combined with drugs, such as GLI antagonist 
(GANT61, inhibitor of GLI1/2), polynucleotide kinase/
phosphatase inhibitor (PNKPi) and gold (Au) nanopar-
ticles (GNPs) [25, 35, 36]. One study demonstrated the 
effect of acute oxygen depletion on cell survival for differ-
ent types of radiation [29]. At last, 9 control groups were 
treated using X-ray [26–29, 31, 32, 34–36], and the other 
3 control groups were not irradiated. The basic character-
istics of the included studies are summarized in Table 1.

Risk of bias
There were five studies did not describe the method 
of cell counting, resulting in high risk of selection bias 
[27–30, 35]. All 12 studies reported the implementation 
process of experiment; but four studies did not describe 
the details of irradiation completely, resulting in moder-
ate risk of performance bias [29, 30, 32, 35]. All 12 studies 
described the methods of measuring the results. 1 study 
did not repeat the data of experiment results, resulting 
in moderate risk of attrition bias [35], and 2 studies did 
not report whether the experiments were repeated [26, 
33]. Only 1 study did not report the culture conditions 
of the cell and cell origin, resulting in a high and a mod-
erate risk of cell-related bias [35]. In addition, one study 
failed to specify whether there was industry sponsoring 
involved [29]. These mentioned above results of the risk 
of bias assessment are shown in Fig.  2 and Additional 
file 2: Table S2.

RBE value
RBE value is a parameter that quantitatively expresses 
the difference in biological effects due to different types 
of irradiation, which is defined as the dose ratio between 

the reference photon radiation (usually as 250 kVp X-rays 
or Co-60 γ-rays) and the particle radiation that produces 
the same biological endpoint (usually as cell-killing) 
[37, 38]. In our review, 5 studies declared that they used 
linear-quadratic model to ascertain RBE values [28, 29, 
34–36], the other 7 did not mention what model they 
used. In total, there were six studies reported 13 RBE 
values using three kinds of PCa cell lines. Among the 13 
RBE values, 9 were proton irradiation (range 0.94–1.52) 
[26, 32, 34–36], and 4 were carbon ion irradiation (range 
1.67–3.7) [28, 29, 36]. Tinganelli et al. reported RBE value 
for carbon ion irradiation was 2.8 ± 0.2 under normoxia 
and 3.7 ± 0.1 under anoxia in RAT-1 cell line [29]. Polf 
et al. reported that the RBE value for proton irradiation 
alone was 1.3 but could reach to 1.5 when combined with 
internalized GNPs [35] (Table 2 and Fig. 3).

Clonogenic Survival
According to the data given in the studies and pruden-
tial calculation conducted by ourselves, we obtained 
the SF values under different doses of carbon ion, pro-
ton, and photon irradiation from ten studies [25, 28–36] 
(Table  3). For example, SF2 means SF under 2  Gy irra-
diation. In this review, SF2 were 0.17 ± 0.12, 0.55 ± 0.20 
and 0.53 ± 0.16 under carbon ion, proton, and photon 
irradiation, respectively. Figure  4 clearly indicates that 
carbon ion irradiation was more effective in clonogenic 
survival compared with X-rays or protons. The combina-
tions of particle irradiation with drugs such as GANT61, 
PNKPi and GNPs also enhance the efficacy in cell killing, 
detailed information will be described in the SER section.

The effects of DDR/R
There were 5 studies reported the DDR/R induced by 
particle irradiation in total [25, 26, 30, 31, 33]. Wang et al. 
found that carbon ion irradiation induced cell cycle arrest 
at G0-/G1-phase via overexpression of miR-16-5p [30]. 
Three studies demonstrated that carbon ion irradiation, 
alone or combined with drug, can induce cell cycle arrest 
at G2-/M-phase at different levels [25, 26, 31]. 2 stud-
ies investigated the DDR/R in terms of apoptosis. Sriv-
astava et  al. proved that combined treatment of carbon 
ion beam and PNKPi further stimulated apoptosis on the 
basis of carbon ion irradiation alone through apoptotic 
body and nucleosomal DNA ladder formation [25]. The 
other one proved that carbon ion irradiation can lead to 
higher rates of apoptosis compared to X-ray [31]. Three 
studies investigated DSB repair. Chen et al. reported rela-
tive expression levels of γ-H2A histone family member 
X (γ-H2AX) were time dependent after proton irradia-
tion [33]. Suetens et al. found dose-dependent increase in 
γ-H2AX foci numbers and foci occupancy after exposure 
to carbon ion irradiation [26]. Wang et  al. proved that 
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carbon ion irradiation can increase not only γ-H2AX foci 
numbers but also the foci lasting time and size compared 
with X-ray [31]. The details are summarized in Table 4.

Motility and migration ability
There were only 3 studies investigated the cell motil-
ity, migration or their related genes expression after 
charged particle irradiation. Konings et  al. showed car-
bon ion irradiation displayed a stronger suppression 
effect regarding migration of PC-3 cells than X-rays and 

protons by down-regulating VEGFA [36]. Suetens et  al. 
reported in two sequential articles that tumor motility-
related genes such as CCDC88A, ROCK1, NEXN, FN1, 
MYH10 and MYH9 were downregulated after 2 Gy car-
bon ion irradiation; among them, CCDC88A, ROCK1, 
FN1, and MYH9 were also down-regulated after 0.5  Gy 
carbon ion irradiation [27, 28].

SER and OER
The SER values of combination therapy were reported in 
three studies, in which only one study reported the OER. 
Konings et al. proved that different types of irradiations 
combined with GANT61 can scarcely enhance the thera-
peutic effect; the SER values were 1.07, 0.98 and 1.09 for 
carbon ion, proton and photon irradiation, respectively 
[36]. Srivastava et  al. concluded that the SER values of 
carbon ion irradiation combined with PNKPi increased 
with the concentration of the PNKPi in the range of 0.5 
to 10 Μm [25]. Polf et al. demonstrated that proton irra-
diation combined with internalized gold nanoparticles 
can enhance the efficacy of therapy with a SER value of 
1.15 [35]. Tinganelli et  al. elaborated that the influence 
of acute hypoxia and irradiation on RAT-1 cells with a 
mean OER of 1.77 ± 0.13 for carbon ion and 2.32 ± 0.04 
for photon irradiation [29]. The details are presented in 
Table 5 and Fig. 5.

Discussion
RBE value
LET is defined as the amount of energy transferred per 
track. Irradiation with high LET can cause more severe 
damage to cells, resulting in complicated DNA damage 
that is difficult to repair. The LET of a particle is influ-
enced mainly by its charge and velocity. In general, more 
charge and less velocity can lead to a higher LET. That 
is the reason why carbon ions have a higher LET value 
than photons and protons. The RBE is an important 

Fig. 2  Results of the risk of bias assessment

Table 2  RBE values carbon ion/proton in prostate cancer cell lines

RBE relative biological effectiveness, L–Q linear–quadratic
a  Data were from RBE10, RBE2Gy and RBE4Gy were not shown in this table

Author, year RBE model RBE value

Konings 2019 L–Q PC-3: 0.94 (proton) and 1.93 (carbon ion)

Butterworth 2012 Not reported DU-145: 1.1

Khachonkham 2020 L–Q DU-145: 1.28 ± 0.25, 1.37 ± 0.17 and 1.52 ± 0.17 
(within SOBP); 1.27 ± 0.27, 0.97 ± 0.4 (before 
peak)a

Tinganelli 2013 L–Q RAT-1: 2.8 ± 0.2 (oxic) and 3.7 ± 0.1 (anoxic)

Polf 2011 L–Q DU-145: 1.3 (untreated) and 1.5 (Au-treated)

Suetens 2015 L–Q PC-3: 1.67
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benchmark that quantifies the difference in biologi-
cal effects caused by the different LET. A higher RBE 
means more biological effects at equivalent doses. The 
most widely reported generic RBE value for protons is 
1.1, which is based on a 10% survival rate, mainly used in 
clinical practice. Here, actually, RBE is a complex func-
tion, this value can be determined by various parameters. 
A growing number of evidences indicate that RBE varies 
with the LET with respect to given tissue depth, energy, 
particle type, the dose per fraction, oxygenation state, 
DNA repair status, cell cycle phase, the biological end-
point and the type of the tissue/cell (α/β ratio) [39, 40]. 
An in  vitro study using the human prostate carcinoma 
cell line DU-145 irradiated by proton has shown a clear 
increase in experimental RBE values with LET, especially 
within the SOBP, with the highest value at the distal edge 
of the Bragg peak, and a significant decrease for higher 
doses [34]. The recognized RBE for carbon ion is gener-
ally estimated to be 2.5–3, however,  values as high as 5 
have also been reported [41]. Similarly, the RBE of carbon 
ion is also determined by these parameters. However, 
some of these parameters have significant differences in 
their effects on carbon ion and proton RBE. The RBE of 

proton with low LET increases slowly with LET value, 
but the RBE of carbon ion with high LET can reach a 
maximum at approximately 100–200  keV/μm and then 
decreases (overkill effect). Furthermore, the RBE of car-
bon ion is relatively less affected by oxygenation state 
than that of proton because the OER decreases as the 
LET increasing [16]. Significantly, the results of a most 
recent prospective randomized clinical trial revealed that 
local effect model (LEM) I and α/β = 2 Gy overestimated 
the RBE of carbon ions in PCa treatment, since RBE-
weighted dose was strongly dependent on the α/β ratio 
as well as the RBE-model [42]. The study concluded that 
using LEM I with α/β = 4 Gy to adjust the biological dose 
calculation might be a more practical approach.

DNA damage and repair
The biological effect was induced by ionization events 
along the particle track, and these events can cause dam-
age to DNA and other relevant biomolecules. Ionization 
events caused by photons (low LET irradiation) exhibit 
both a direct and indirect component. However, high 
LET-charged particle radiation primarily induced more 
clustered DNA damage by direct ionizations. The types 
of clustered DNA damage include chemically altered 
base lesions (oxidized purines or pyrimidines), abasic 
sites, intrastrand crosslinks, single-strand breaks (SSBs), 
and DSBs [43]. Clustered DNA damage is a serious 
impediment to effective repair mechanisms, with DSBs 
inside clustered lesions rejoining with slower kinetics and 
less thoroughly than frank DSBs, resulting in induction of 
genomic instability [44]. When DNA damage is detected, 
the corresponding DDR/R mechanism is triggered. The 
failure of cells to deal with cluster DNA lesions effec-
tively has a significant influence on their normal function 
and survival. Complex lesions can lead to mutations, the 
loss of large parts of the genome, and even apoptotic cell 
death if they are unrepaired or misrepaired [45, 46].

Fig. 3  RBE, average LET, initial energy, particle type and cell line of 
the included studies. RBE relative biological effectiveness, LET linear 
energy transfer

Table 3  SF values of prostate cancer cells irradiated by carbon 
ion, proton and photon

SF surviving fraction, NA not available

Data were mean ± standard deviation or median with interquartile ranges

Carbon ion irradiation Proton irradiation Photon irradiation

SF1 0.42 ± 0.16 0.77 ± 0.13 0.78 ± 0.15

SF2 0.17 ± 0.12 0.55 ± 0.20 0.53 ± 0.16

SF3 0.033 ± 0.017 0.21 ± 0.02 0.34 ± 0.18

SF4 0.065 [0.038, 0.092] 0.28 ± 0.19 0.31 ± 0.13

SF5 NA NA 0.16 [0.01, 0.21]

SF6 NA 0.035 ± 0.007 0.12 ± 0.06

SF8 NA 0.007 ± 0.002 0.041 ± 0.025

Fig. 4  SF values of prostate cancer cells irradiated by carbon ion, 
proton and photon. SF surviving fraction
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DNA repair pathways in mammalian cells are as fol-
lows: base excision repair, nucleotide excision repair, 
mismatch repair, and the pathways responsible for the 
repair of DSBs, namely, homologous recombination 
(HR), classical non-homologous end joining (c-NHEJ), 

backup non-homologous end joining (b-NHEJ), and sin-
gle-strand annealing [47]. The selection of the DNA DSB 
repair pathway is predominantly determined by radia-
tion quality and potentially by DSB load. It is anticipated 
that the production of DNA lesions with variable degrees 
of complexity would concurrently activate several DNA 
repair mechanisms [48, 49]. In low LET irradiation-
induced DSB, c-NHEJ is the main pathway in the G1- and 
early S-phases of the cell cycle, whereas both HR and 
c-NHEJ were activated in the late S- and G2-phases [50]. 
It is unclear if cells preferentially select a specific path-
way to repair DSBs generated by high LET irradiation 
[51]. According to some studies, NHEJ is less effective at 
removing clustered DSBs caused by high LET irradiations 
than low LET irradiation [52–54]. Saha et  al. indicated 
that the HR pathway may be preferable for the repair of 
clustered DNA damage caused by heavy charged parti-
cles [55]. Gerelchuluun et al. also found that compared to 
gamma rays and protons, the HR pathway seems to play a 
more important role in the repair of DSBs in carbon ions 
[56]. Interestingly, some studies showed that NHEJ may 

Table 4  DDR/R of prostate cancer cells after carbon ion/proton irradiation

DDR/R DNA damage response and repair, PNKPi polynucleotide kinase/phosphatase inhibitor, DSB DNA double-strand break

↑, increase

Author, year Treatment Outcome Finds

Wang 2019 Carbon ion irradiation Cell cycle checkpoints ↑miR‐16‐5p; G0-/G1-phase arrest

Srivastava 2018 Carbon ion irradiation + PNKPi Cell cycle checkpoints
Apoptosis

G2-/M-phase arrest
Inducing the apoptosis through apoptotic body and nucleosomal 
DNA ladder formation

Suetens 2016 Carbon ion irradiation DSB repair
Cell cycle checkpoints

↑γ-H2AX foci numbers and foci occupancy
Permanent G2-/M-phase arrest

Chen 2020 Proton irradiation DSB repair ↑levels of γ-H2AX

Wang 2020 Carbon ion irradiation DSB repair
Cell cycle checkpoints Apoptosis

↑γ-H2AX foci numbers, lasting time and size
G2-/M-phase arrest
The rates of apoptosis were 27.34% and 37.93% after 2 and 4 Gy 
carbon ion irradiation, respectively (versus 14.1% and 23.59% fol‑
lowing 2 and 4 Gy X-ray irradiation, respectively)

Table 5  SER values of combination therapy and OER

SER standard enhancement ratio, OER oxygen enhancement ratio, GANT61 GLI antagonist, PNKPi polynucleotide kinase/phosphatase inhibitor, NA not available

Author, year Combination therapy (Dose) Cell line SER

Carbon ion irradiation Proton 
irradiation

Photon irradiation

Konings 2019 GANT61 10 μM PC-3 1.09 0.98 1.07

Srivastava 2018 PNKPi 0.5 μM
PNKPi 1.0 μM
PNKPi 5 μM
PNKPi 10 μM

PC-3
PC-3
PC-3
PC-3

1.21
1.29
1.47
2.05

NA
NA
NA
NA

NA
NA
NA
NA

Polf 2011 Gold nanoparticles DU-145 1.15

OER

Tinganelli 2013 NA RAT-1 1.77 ± 0.13 NA 2.32 ± 0.04

Fig. 5  SER values of combination therapy and OER. SER standard 
enhancement ratio, OER oxygen enhancement ratio
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play a main role in carbon ion-induced damage repair, 
though the using of HR was increased [57–59]. Srid-
haran et  al. indicated that a major complex of c-NHEJ 
has been implicated in the repair of high-LET radiation-
induced clustered DSBs [60]. NHEJ inhibitors have been 
shown to be more effective than HR after carbon ion 
irradiation [61, 62]. There were also scholars assumed 
that NHEJ is essential for processing DNA DSB regard-
less of the irradiation quality, whereas the significance of 
HR repair increases when proton irradiation is used [63]. 
Soni et  al. concluded that the choice of pathways may 
be dose-dependent; when HR becomes saturated under 
a high dose irradiation, NHEJ could be activated further 
[64]. This is a critical issue that should be addressed soon 
as it concerns whether NHEJ inhibitors or HR inhibitors 
should be used as a combination therapy for CPT.

The genetic background of cell lines may have dis-
tinct effects on radiation response for different radiation 
qualities, genetic defects in DNA repair and DDR genes 
in cancer cells are important factors [65]. HR-deficient 
cells and wild-type cells with small interfering RNA-
downregulated RAD51 were significantly hypersensitive 
to proton irradiation, resulting in an elevated relative 
biological effectiveness compared to the relative biologi-
cal effectiveness determined for wild-type cells. In con-
trast, the absence of nonhomologous end-joining did not 
result in hypersensitivity to proton exposure [66]. Andrea 
et al. also found human BRCA2-deficient ovarian cancer 
cells were hypersensitive to proton irradiation compared 
with photon irradiation [67]. Response to clustered DNA 
damage repair after particle irradiation is influenced by 
a transition of ataxia–telangiectasia mutated (ATM) and 
RAD3-related transition at lesion sites and switch from 
NHEJ to HR [68–70]. Besides, NHEJ deficiency is more 
essential than proton LET in determining cell survival. 
BRCA1 mutation-disrupted cells exhibited increased 
radiosensitivity for high-LET protons exclusively, 
whereas RAD51 depletion resulted in increased radio-
sensitivity for both photons and protons [71].

Histone H2AX, a variation of histone H2A, is one 
of the key proteins responsible for genome integrity 
monitoring [72]. H2AX becomes phosphorylated on 
Ser139 in response to DNA damage, which is defined as 
γ-H2AX, especially when the damage includes the induc-
tion of DSBs [73]. When cluster DNA damage occurs, 
the marker γ-H2AX can remain for long periods [51]. 
Ibanez et al. proved that γ-H2AX foci size is an accurate 
parameter for correlating the rejoining of DSBs induced 
by different LET radiations and radiosensitivity [74]. The 
studies included in our review also confirmed that the 
γ-H2AX level, γ-H2AX foci numbers, occupancy, last-
ing time and size increased after carbon ion and pro-
ton (11.7  keV/µm) irradiation in PC-3 cells [26, 31, 33]. 

Furthermore, the studies also found that carbon ion irra-
diation inhibited human PCa cell (LNCaP and PC-3) pro-
liferation by inducing G0-/G1- and G2-/M-phase arrest 
[25, 26, 30, 31], and eventually resulted in more apoptosis 
compared to photon irradiation [25, 31].

Epigenetic regulation of DNA repair may also be reli-
ant on radiation quality in addition to proteins directly 
engaged in DNA DSB rejoining [75–77]. Numerous 
studies have suggested that ubiquitination, methylation, 
and acetylation in DNA repair are important epigenetic 
pathways for targeting in particle therapy [78–82]. A pre-
vious study indicated that histone H2B ubiquitylation 
improves the repair of clustered DNA lesions, resulting 
in increased survival following exposure to high-LET 
radiation [79]. Targeting the ubiquitination pattern can 
thereby sensitize the tumor (high-LET) but not the nor-
mal tissue (low-LET) during heavy ion therapy, hence 
expanding the therapeutic window [77]. The pattern of 
DNA methylation in cells that survive being exposed to 
charged particles or X-rays seems to be very different 
[83]. In addition, histone deacetylase inhibitors appear to 
promote cell death more efficiently following proton or 
carbon ion irradiation than following X-ray exposure [81, 
82]. All of this evidence seems to indicate that the radia-
tion-induced epigenetic profile is influenced by radiation 
quality rather than LET alone.

Motility and migration ability
Although the literatures examining gene expression 
after exposure to charged particle irradiation on tumor 
cells are relatively limited, we can still obtain some valu-
able information about motility, migration or invasion. 
Fujita et al. found that carbon ion irradiation suppressed 
the migration and invasion of human pancreatic cells 
(MIAPaCa-2, BxPC-3 and AsPC-1) via the Rho/ROCK 
signaling pathway [84]. Akino et  al. showed that car-
bon ion irradiation effectively suppressed migration and 
invasion of human non-small-cell lung cancer (NSCLC) 
cells (A549 and EBC-1) via down-regulating ANLN [85]. 
Likewise, proton irradiation has been shown in  vitro 
and in  vivo to repress pro-angiogenic gene expression 
as well as reduce cell motility genes [86, 87]. However, 
Maruta et al. believed that the motility of A549 cells was 
increased by carbon ion irradiation via the Rho/ROCK 
signaling pathway [88]. As mentioned earlier, motility 
and migration were suppressed in PC-3 cells after carbon 
ion irradiation by down-regulating several genes, and low 
expression of CCDC88A, FN1, NEXN and ROCK1 may 
be associated with better prognosis [26, 27]. Konings 
et  al. focused on the effects of different radiation types 
on hedgehog (Hh) signaling pathway and target genes. 
They concluded carbon ion irradiation suppressed the 



Page 11 of 16Du et al. European Journal of Medical Research          (2022) 27:306 	

migration of PC-3 cells more than both photon and pro-
ton by down-regulating VEGFA [36].

SER
We also noticed that there were a number of in  vitro 
studies conducted with respect to different perspectives 
on biological effects of cancer cells induced by charged 
particles in combination with drugs, including chemo-
therapy, immunotherapy, nanoparticles and targeted 
therapy. In targeted therapy combination, many studies 
investigated a variety of typical targets or signaling path-
ways in different cancer cells: the combination of poly 
(ADP-ribose) polymerase (PARP) inhibitors and charged 
particle irradiation in NSCLC [89, 90], pancreatic cancer 
[89–91], glioblastoma (GBM) [92], and cervix carcinoma 
[92] cells; the combination of epidermal growth factor 
receptor (EGFR) and downstream mammalian target of 
rapamycin (mTOR) inhibitors and charged particle irra-
diation in chondrosarcoma [93], hepatocellular carci-
noma [94], NSCLC [95], and head and neck squamous 
cell carcinoma (HNSCC) cells [96]; the combination of 
heat shock protein 90 (Hsp90) inhibitors and carbon ion 
irradiation in chondrosarcoma [97], NSCLC [98, 99] and 
cervix carcinoma [98, 99] cells; and the combination of 
DNA-dependent protein kinase catalytic subunit (DNA-
PKcs) inhibitors and charged particle irradiation in 
HNSCC [100], breast cancer [57], cervix carcinoma [57], 
NSCLC [101], and GBM cells [62]. In PCa, Hh inhibitor 
GANT61 failed to sensitize the cells to proton and carbon 
ion radiation, with SER values of 0.98 and 1.07; mean-
while, the migration of cancer cells was not inhibited by 
the combination of two particle irradiation and GANT61 
compared with combined with X-ray [36]. Polynucleotide 
kinase/phosphatase (PNKP) is an enzyme that plays an 
important role in NHEJ. Srivastava et al. found that when 
carbon ion irradiation was combined with PNKPi, PC-3 
cells experienced considerable apoptosis, and cell cycle 
arrest was also increased during the G2-/M-phase [25]. 
Besides, it was proven that metallic-based nano-agents 
(e.g., NPs, nanocauliflowers, and nanocrystals) expressed 
radiosensitizing and synergistic effects for radiotherapy. 
Many studies also demonstrated that nano-agents can be 
potent in combination with proton [102–107] and car-
bon ion [108–111] irradiation for the treatment of dif-
ferent malignancies both in vivo and in vitro. Polf et  al. 
showed that the effectiveness of proton radiotherapy for 
the killing of prostate tumor cells (PC-3) was increased 
by approximately 15–20% (SER10 = 1.15, SER50 = 1.2) for 
those cells containing internalized GNPs [35].

OER
While there was only one included study that reported the 
OER of carbon ions, it is still necessary to discuss hypoxia. 

Hypoxia is very common in malignant solid tumors and 
is associated with malignancy and a poor prognosis. In 
radiobiology, oxygen-dependent indirect DNA damage is 
reduced when hypoxia occurs. A major proportion of this 
damage is from the production of reactive oxygen species 
(ROS) (the rest is from the radiolysis of water). When the 
partial pressure of oxygen (pO2) decreases, fewer oxygen 
molecules become available, impacting the generation of 
ROS, which can lead to increased radioresistance. There-
fore, the concept of OER was proposed to quantify the 
radioresistance. The OER of carbon ions decreases with 
LET at the same oxygen concentration (under 21%) level as 
well as with oxygen concentration at the same LET value 
[112, 113]. Hypoxia-inducible factor-1α (HIF-1α; encoded 
by HIF1A) is a transcription factor that regulates sev-
eral genes in response to hypoxic stimuli, including those 
involved in tumorigenesis and malignant progression, 
such as proliferation, metabolic changes, neoangiogenesis, 
invasion, metastasis, and treatment resistance [114–116]. 
Several studies demonstrated that carbon ion irradiation 
reduced HIFs expression in cancer stem cell (CSC) sub-
populations of HNSCC cells (SQ20B-CSCs and FaDu-
CSCs) and GBM cells (U251, GL15) compared to photon 
irradiation under hypoxia [117–119]. It was also validated 
in an in vivo experiment [120]. In general, carbon ion irra-
diation seems to have promising potential for reducing 
radioresistance caused by hypoxia, particularly in severely 
hypoxic malignancies, such as PCa and pancreatic cancer 
[112].

Limitations
The findings of this review should be interpreted within 
the context of its limitations. First, searching only English 
databases can lead to certain language biases. Further-
more, due to the scarcity of literature reporting radio-
biological responses in PCa, as well as the diversification 
of outcome assessment tools, the validity of our results 
may be challenged. Lastly, the findings of in  vitro stud-
ies do not necessarily agree exactly with in vivo studies, 
more in  vivo data accumulation is required. Notwith-
standing, we collected the most current information we 
could obtain, indicating the most recent evidence for 
charged particle irradiation on PCa in vitro. We hope this 
review  could prompt further fundamental and clinical 
research regarding this matter.

Conclusions
To the best of our knowledge, this systematic review is 
the first study to pool the radiobiological effects of car-
bon ion and proton irradiation on PCa cell lines, includ-
ing cell survival (as SF), DDR/R, motility and migration 
ability, SER and OER. In general, we believe it is plausible 
to conclude that both carbon ion and proton irradiation 
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have advantages in radiobiological effect over photon 
irradiation on PCa cell lines. Combination therapy may 
enhance the gain ratio of CPT for PCa. Based on the 
information we have right now, carbon ion irradiation 
seems to have further advantages over proton irradiation.
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