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Abstract 

Oral cancer is one of the most common malignant tumors of the head and neck, not only affects the appearance, but 
also affects eating and even endangers life. The clinical treatments of oral cancer mainly include surgery, radiotherapy, 
and chemotherapy. However, unsatisfactory therapeutic effect and toxic side effects are still the main problems in 
clinical treatment. Tumor microenvironment (TME) is not only closely related to the occurrence, growth, and metasta-
sis of tumor but also works in the diagnosis, prevention, and treatment of tumor and prognosis. Future studies should 
continue to investigate the relationship of TME and oral cancer therapy. This purpose of this review was to analyze the 
characteristics of oral cancer microenvironment, summarize the traditional oral cancer therapy and immunotherapy 
strategies, and finally prospect the development prospects of oral cancer immunotherapy. Immunotherapy targeting 
tumor microenvironment is expected to provide a new strategy for clinical treatment of oral cancer.
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Introduction
Oral cancer is one of the most common malignant 
tumors of the head and neck [1]. Most of them are squa-
mous cell carcinoma (OSCC), which is associated with 
mucosal variation [2]. Oral cancer usually occurs at the 
bottom of the mouth, lips, tongue, gums, and the inside 
of the cheek, including soft or hard palate cancer, gingival 
cancer, oropharyngeal cancer, lip cancer, tongue cancer, 
jaw bone cancer, salivary gland cancer, oral base cancer, 
facial skin mucosa, and maxillary sinus cancer [3]. Oral 
cancer can be caused by many factors, including long-
term alcoholism, poor oral hygiene, excessive exposure 
to sunlight, betel nut, long-term foreign body stimula-
tion, malnutrition, mucosal leukoplakia or erythema, and 
oral ulcers. Oral cancer not only affects the appearance 

but also affects eating and even endangers life. There are 
many treatment methods for oral cancer [4, 5]. Currently, 
the conventional treatment methods are surgery therapy, 
radiotherapy, and chemotherapy [6]. Surgery is generally 
based on the size of the tumor to choose the appropri-
ate range of resection; some tongue cancer patients may 
be seriously affected in eating and speaking after surgery 
[7]. Radiation therapy belongs to local treatment. During 
radiotherapy, local skin and mucous membrane may be 
damaged, including radioactive skin injury, radioactive 
mucous membrane injury, and radioactive stomatitis [8]. 
Chemotherapy belongs to systemic treatment, which may 
lead to pancytopenia and severe nausea gastrointestinal 
reaction [9]. Traditional Chinese Medicine treatment is 
mainly used for the treatment of oral cancer complica-
tions caused by other strategies [10]. Nevertheless, there 
are few safe and efficient clinical treatment strategies 
for oral cancer, which is mainly due the complex tumor 
microenvironment (TME) [11]. TME is closely related to 
the occurrence, metastasis, and recurrence of malignant 
tumors and is composed of non-cellular components in 
the extracellular matrix (ECM) and cellular components, 
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such as fibroblasts and immune cells [12]. TME per-
forms signal transmission through autocrine–paracrine 
signaling pathway, thus controlling the proliferation and 
metastasis of tumor cells [13]. In 1863, Virchow et  al. 
first proposed the concept of tumor microenvironment, 
pointing out the relationship between inflammation and 
cancer [14]. With the rapid development of tumor cytol-
ogy and other disciplines, studies on the mechanism of 
tumor genesis, development, and metastasis have been 
continuously deepened [15, 16]. Abnormal TME could 
promote the invasion and metastasis of tumors, as well as 
hindering effective drug diffusion and immune cell inva-
sion [17, 18]. In the early stage, tumor microenvironment 
was able to restrain tumor growth and then the TME 
gradually transformed into the "soil" to assist the sur-
vival and development of malignant tumor [19]. Under 
its influence, tumor microenvironment is characterized 
by slight acidity, hypoxia, high reactive oxygen species 
(ROS), high osmotic pressure, and abnormal vasculature 
[20, 21]. In addition, tumor microenvironment inhibited 
the proliferation and activity of tumor-specific T cells 
(CTLs) and promoted regulatory T cells (Tregs), result-
ing in a decrease in the secretion of immune-activating 
cytokines, such as tumor necrosis factor (TNF-α) and 
interferon γ (IFN-γ), and an increase in the secretion of 
immunosuppressive cytokines, such as transforming 
growth factor (TGF-β) and interleukin-10 (IL-10). TME 
could also assist tumor cells to escape immune surveil-
lance, hinder dendritic cells (DCs) from presenting anti-
gens, inhibit the activity of CTLs, and ultimately achieve 
immune tolerance and immune escape of tumor cells 
[22]. In recent years, with the deepening understanding 
of the role of TME in tumor development, immunother-
apy based on TME shows an important research value 
and clinical significance.

There are complex network relationships among the 
components of TME, and a deep understanding of the 
composition and characteristics of TME is the premise of 
developing immunotherapy based on the tumor micro-
environment. In this review, we highlighted the tumor 
microenvironment and immunotherapy strategies of oral 
cancer. First, the compositions and functions of TME in 
oral cancer were presented and reviewed. More impor-
tantly, the recent development of treatment strategies 
for oral cancer was summarized, especially for immuno-
therapy. Finally, the promising development directions 
of immunotherapy for oral cancer in the future were 
prospected.

Microenvironment of oral cancer
The occurrence, development, and metastasis of tumors 
are closely related to external environment of oral cancer 
cells, including the structure, function, and metabolism 

of tumor tissue, as well as the internal environment of 
cancer cells (Fig. 1). Tumors and their microenvironment 
are interdependent and antagonistic [23].

Tumor extracellular matrix
ECM is a complex network structure composed of mac-
romolecules secreted by tumor cells into the extracellular 
stroma [24]. The regulatory abnormalities of ECM are a 
prominent feature of TME. In the process of tumor gen-
esis and development, tumor cells promote the formation 
of ECM; in turn, ECM can also regulate the related pro-
liferation of tumor cells. The interaction between tumor 
cells and ECM can activate multiple specific signaling 
pathways [25, 26]. Therefore, an adequate understanding 
of ECM dysregulation is beneficial to identify potential 
tumor therapeutic targets. The structure and function 
of collagen, fibronectin, elastin, and other ECM compo-
nents will be discussed.

Collagens accounts for about 90% of human exter-
nal matrix and 30% of total protein [27]. Collagen forms 
macromolecules through cross-linking between mol-
ecules and enhances the strength and toughness of tis-
sues [28]. In addition, non-collagenous domains present 
in collagen can self-assemble or assemble with other 
ECM proteins, providing the complexity of the supramo-
lecular structure. Thus, collagen can form fibers, beaded 
fibers, anchored fibers, and even collagen networks. 
Collagen is a protein with a high glycosylation level and 
a long half-life, and its degradation is crucial in the for-
mation and development of tumor tissues. Matrix met-
alloproteinases (MMPs) are involved in the physiological 
and pathological degradation of collagen. In the process 
of collagen degradation by MMPs, several signal mol-
ecules are released from collagen, subsequent altering the 
mechanical properties and signal transduction in TME 
[29]. Collagen is a major component of tumor ECM, 
which affects tumor cell proliferation and intercellular 
signaling.

Fibronectin, although low expression in tumors, shows 
multiple functions in ECM [30, 31]. Fibronectin works in 
cell adhesion, migration, proliferation, blood coagulation, 
and vascularization [32]. In ECM, fibronectin connects 
the structural proteins to construct a complete matrix 
[33]. In addition to binding multiple structural proteins 
to enhance ECM, fibronectin can also interact directly 
with other proteins to perform regulatory functions [34]. 
First, fibronectin is rich in arginine-glycine-asparagine 
(RGD) sequences to recognize and bind integrins on cell 
membranes. Therefore, fibronectin works in intracellular 
signal transduction through induction of integrin attach-
ment. In addition, fibronectin can also interact directly 
with many growth factors, such as insulin-like growth 
factor (IGF), fibroblast growth factor (FGF), TGF-β, 
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hepatocyte growth factor (HGF), and platelet-derived 
growth factor (PDGF) [35]. Therefore, despite the low 
levels of fibronectin, it still plays a key role in tumor 
malignant transformation.

Elastin is an important component of elastic fib-
ers, which mainly exists in ligament and vascular wall. 
Together with collagen, elastin maintains the strength 
and strength of tissue by resisting it from deforming or 
breaking. Elastin is highly elastic compared to colla-
gen due to its amino composition and dynamic three-
dimensional structure. Laminin proteins, combined with 
collagen, form the components of the basement mem-
brane and involves in the vascularization during vascular 
maturation [36]. Laminin is upregulated during epitheli-
alization, providing an interface for epithelial cell adhe-
sion, allowing it to adhere and stretch, therefore alerting 
tumor metastasis.

Hyaluronic acid (HA) is another major component of 
ECM, which has important functions, such as regulat-
ing vascular wall permeability, promoting wound heal-
ing, and material diffusion and transportation [37, 38]. 
The number of disaccharide repeat units in HA molecule 
reaches more than 10,000  Da. The long polymer chain 
forms random entanglement in the solution, and a large 
number of hydroxyl groups capture water molecules by 
forming hydrogen bonds, thus increasing the elastic 

viscosity of ECM [39]. In addition, HA can serve as an 
important "reservoir" for water, buffered ion exchange, 
and water and osmotic balance in ECM. Some substances 
and biomacromolecules have selective permeability due 
to their charged surfaces and selective domains. Fur-
thermore, HA can be recognized by tumor cells through 
intracellular signal transduction molecules, such as mem-
brane receptor CD44. This specific recognition plays a 
crucial role in the migration and invasion of tumor cells 
[40, 41].

In addition, ECM is an important "catalyst" for the 
realization of a variety of growth factors. First, ECM 
can act as a repository for growth factors and signaling 
molecules for malignant transformation of tumor cells. 
PDGF can effectively accumulate in ECM after combin-
ing with collagen [42]. Heparin binding growth factor 1 
(HBGF-1), a growth factor associated with angiogenesis, 
also binds type I and type IV collagen [43]. Paralkar et al. 
illustrated that TGF-β could bind with type IV collagen 
in the basement membrane [44]. Furthermore, ECM can 
promote the interaction between growth factors and 
their receptors. Heparin sulfate proteoglycan could pro-
mote the interaction between Wnts and Frizzled, thereby 
stimulating the proliferation of HCC cells [45]. In addi-
tion, degradation of ECM contributes to the release of 
growth factors and cytokines. MMP is overexpressed 

Fig. 1  Schematic diagram of the microenvironment of oral cancer
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in tumors, and a large amount of vascular endothelial 
growth factor (VEGF) will be released after ECM cutting, 
which promotes tumor development [46].

Vascular microenvironment
TME is closely related to the generation of tumor angio-
genesis; the diameter of the tumor is usually no more 
than 2  mm in the absence of tumor angiogenesis [47]. 
When the diameter of solid tumor exceeds 2  mm, it is 
difficult to obtain enough oxygen and nutrients from the 
surrounding environment, and tumor cells will secrete 
angiogenic factors into TME to induce the formation of 
new blood vessels [48]. Tumor cells directly or indirectly 
participate in the formation of tumor blood vessels. In 
hypoxic environment, hypoxia-inducible factor (HIF) 
directly upregulates the gene expression of VEGF and 
other angiogenic factors [49]. Marjon et  al. found that 
VEGF mRNA expression level was increased by 10–50 
times when the oxygen concentration of tumor cells was 
reduced from 21 to 0.3% [50]. The mRNA expression of 
VEGF was relatively high in the necrotic and vascularless 
areas of tumor tissue. Tumor cells polarize the recruited 
cells to form tumor-associated stromal cells, promote 
the expression of vascular growth factor, and indirectly 
induce the formation of tumor angiogenesis. VEGF 
can bind to vascular endothelial growth factor receptor 
(VEGFR) in tumor tissues to activate downstream signal-
ing pathways and change vascular permeability, thereby 
promoting tumor angiogenesis [51]. Tumor angiogen-
esis is closely related to tumor growth and metastasis. 
Inhibition/destruction of tumor angiogenesis microen-
vironment will be one of the potential tumor treatment 
strategies.

Stromal cells
Stromal cells mainly include cancer-associated fibro-
blasts (CAFs), endothelial cells, and adipocytes. They 
can perform signal transmission and secrete cytokines to 
regulate tumor cell proliferation, metastasis, and escape 
from immune system attack through direct or indirect 
interaction with tumor cells. It is greatly significant for 
the diagnosis and treatment of tumors by exploiting the 
role of stromal cells in tumor genesis, development, and 
metastasis.

CAFs are derived from fibroblasts and mesenchymal 
stem cells inherent to local tissues of bone marrow and 
fat. CAFs exist in all stages of solid malignant tumors. 
CAFs can differentiate into static fibroblasts and bone 
marrow-derived mesenchymal stem cells, as well as epi-
thelial cells, smooth muscle cells, pericytes, and adipo-
cytes [52]. Tumor cells can recruit CAFs precursor cells 
and induce their activation into CAFs. In addition, CAFs 
can secrete a variety of cytokines and ECM to promote 

tumor proliferation and metastasis. CAFs also involve 
in vascular generation, ECM remodeling, immunosup-
pression, and other exogenous pathways conducive to 
tumor genesis and development [53]. Generally, CAFs 
inhibit tumors initially, but as tumors further deteriorate 
and develop, they transform into tumorigenic cells [54]. 
Cytokines and chemokines secreted by CAFs have immu-
nosuppressive and activation effects on a variety of lym-
phocytes, including CD8+ T cells, DCs, macrophages, 
and Tregs. However, CAFs have an immunosuppressive 
effect against the immune system. The secretion of IL-6, 
CXCL-9, and TGF-β by CAFs plays a significant inhibi-
tory role in anti-tumor T cell response [55]. CAFs recruit 
and retain T lymphocytes in tumor tissues through dif-
ferent mechanisms, such as chemokines, cell adhesion 
molecules, inhibition of immune checkpoint activation, 
and CD8+ T cell exhaustion [56]. In addition, CAFs are 
the sources of a variety of growth factors, including TGF-
β, VEGF, chemokines, and interleukins [57]. Secretion of 
these factors can promote the transformation of tumor 
cells, enhance the dryness of existing tumor stem cells, 
and promote epithelial mesenchymal transformation 
(EMT) of tumor cells [58].

Macrophages are another kind of stromal cells in 
tumor tissue with remarkable heterogeneity and variabil-
ity. Macrophages can transform their functions and phe-
notypes according to the surrounding environment [59]. 
Generally, macrophages can be divided into M1 and M2 
subtypes [60]. The M1 subtype consists of classically acti-
vated pro-inflammatory macrophages that have bacteri-
cidal, tumor-suppressive, and antiangiogenic functions. 
They can be activated through their pattern recognition 
receptors when recognizing molecular patterns associ-
ated with damaged tissues or pathogens, and then pro-
duce inflammatory cytokines, including macrophage 
colony-stimulating factor 1 (M-CSF1) and granulo-
cyte–macrophage–CSF [61]. M2 subtype macrophages 
can produce anti-inflammatory, immunosuppressive 
chemokines, and cytokines, but have no cytotoxic activ-
ity to tumor cells [62]. Tumor-associated macrophages 
(TAMs) are induced to differentiate by growth factors 
and cytokines in tumor tissues [63]. Recruitment and 
differentiation of TAM macrophages at tumor sites are 
mainly induced by granulocyte–macrophage colony-
stimulating factor (GM-CSF), CCL2, VEGF, IL-6, and 
IL-8, which are related to hypoxia, acidity, and inflamma-
tion of tumor tissues [64]. TME invasion is determined 
by CC chemokines produced by local lymphoendothe-
lial cells and stromal cells, which have been confirmed in 
multiple tumor types [65]. TAM, guided by the increas-
ing gradient of chemotactic molecules, infiltrates the 
hypoxic/necrotic regions of tumors in large quantities 
and survives by shifting its metabolism to glycolysis [66]. 
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Besides, TAM can produce high levels of TGF-β, block-
ing the proliferation and killing effects of cytotoxic T 
cells, while activating immunosuppressive Treg cells [67].

Another important cell type in tumor tissue is adipo-
cytes. Adipocytes in TME can secrete a variety of tumor-
related adipocytokines, which works in the occurrence 
and development of tumors [68]. Due to the influence of 
hypoxia and high pressure in tumor microenvironment, 
pathological metabolic disorder occurs in adipocytes, 
which changes the secretion of adipokines and lipid 
metabolites around tumor cells, activates signal trans-
ducer and activator of transcription 3 (STAT3) and other 
tumor-related signaling pathways, and accelerates the 
further development and deterioration of tumor [69].

Immune cells
Tumor-infiltrating lymphocytes (TILs) are the collective 
term of all lymphocytes in tumor tissue [70]. TILs are 
produced by lymphoid organs and circulated to tumor 
tissues. They are the main cellular components of the 
host in response to anti-tumor immune response. TILs 
can be divided into T lymphocytes, B lymphocytes, and 
natural killer (NK) cells according to its origin and sur-
face markers.

T lymphocytes play a central role in anti-tumor 
immune response and are the dominant element in TME. 
Tumor-specific antigen (TSA) can activate highly specific 
CD8+ T cells CD4+ T cells and tumor-specific antibodies 
[71]. CD8+ T cells inhibit tumor proliferation by direct 
lysis of tumor cells or release of IFN-γ and TNF-α [72]. 
Prolonged exposure to antigens of tumor-specific T cells 
can lead to their exhaustion. Programmed cell death-1 
(PD-1) and T cell immunoglobulin-3 (TIM-3) are consid-
ered as immune markers of T cell exhaustion [73]. CD8+ 
T cells may play a functional state of immune activation 
or immunosuppression based on the balance between 
costimulatory and coinhibitory signals in the microen-
vironment [74]. CD4+ T cells are mainly including Th1, 
Th2, Th17, and Tregs. Th1 stimulates the tumor-killing 
effect of CD8+ T cells through cytokines, such as IFN-γ, 
TGF-β, and IL-2 [75]. Furthermore, it can also promote 
the activation of macrophages and the maturation of DC 
cells, while Th2 can assist eosinophils to achieve killing 
effect [76]. Th17 cells can be converted to Th1 properties 
and play an anti-tumor role in specific cytokine environ-
ments. On the contrary, they are capable to be converted 
to achieve the properties of Tregs and promote tumor 
progression in some special conditions [77]. Tregs are a 
subtype of CD4+ T cells to prevent autoimmune diseases. 
They are recruited to TME by chemokines secreted by 
tumor cells and macrophages, further inhibiting the anti-
tumor immune response [78]. Tregs are activated after 
recognizing the tumor-associated antigen (TAA) released 

by damaged tumor cells, effectively inhibiting the activa-
tion of TAA-specific effector T cells, releasing a variety 
of cytokines, and ultimately inhibiting the anti-tumor 
immune-killing effect [79]. In addition, Tregs can inhibit 
the action of a variety of other immune cells [80]. The 
high infiltration rate of Tregs in tumors is closely asso-
ciated with local recurrence, rapid tumor progression, 
and high sentinel lymph node metastasis rate [81]. The 
ratio between different T cell subsets is also an important 
indicator of tumor occurrence and development. CD8+/
FoxP3+ and CD8+/CD4+ ratios are the most commonly 
used indicators, indicating the strength of anti-tumor 
immune activity. In order to escape immune attack, 
tumor cells inhibit the role of tumor-specific T cells and 
induce the activation of immunosuppressed Tregs, thus 
reducing the ratio of CD8+ T cells/Tregs [82].

NK cells, derived from bone marrow lymphoid stem 
cells, differentiate and mature in bone marrow and thy-
mus. They can kill tumor cells nonspecifically without 
dependence on major histocompatibility complex (MHC) 
[83, 84]. NK cells participate in the regulation of adaptive 
immune response through interaction with DC cells and 
arise a strong cytotoxic immune response against tumor 
cells [85]. Tumor cells resist NK cell killing by releasing 
TGF-β, downregulating antigenic expression and increas-
ing MHC I [86]. In addition, Tregs can also compete with 
NK cells for IL-2, thereby inhibiting NK cell activity. 
Tumor-infiltrating NK cells can limit blood metastasis of 
tumor cells [87].

B lymphocytes are derived from bone marrow pluripo-
tent stem cells, accounting for 15–20% of all infiltrating 
lymphocytes [88]. B lymphocytes can be differentiated 
into plasma cells under antigen stimulation, which can 
secrete antibodies and activate humoral immune 
response of the body. The infiltration of B lymphocytes 
is associated with primary melanoma proliferation, 
reduced risk of metastasis, and prolonged survival [89]. 
The mechanism of the role of tumor-infiltrating B lym-
phocytes in anti-tumor immune response is still unclear 
and needs to be further studied.

Dendritic cells (DCs) are specialized antigen present-
ing cells that can absorb, process, and present antigens 
and initiate specific immune responses mediated by T 
lymphocytes. DCs can recognize tumor antigens to regu-
late the innate and adaptive immunity [90]. DCs cross-
presents antigens to CD8+ T lymphocytes through MHC 
I molecules after obtaining tumor-associated antigen, 
thus inducing the hosts’ specific anti-tumor response. 
DCs can also directly participate in cytotoxic immune 
responses by activating NK cells [85]. In TME, IL-10, 
TGF-β1, VEGF, and other factors secreted by tumor 
cells or TAMs can inhibit the maturation of DCs, thus 
avoiding the host’s anti-tumor immune response [91]. 
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Immature/tolerant DCs can regulate tumor angiogenesis 
and contribute to tumor proliferation [92]. Mature DCs 
are mainly distributed around the tumor and are related 
to the activation state of T lymphocytes, tumor size, and 
patient survival. The number and distribution of mature 
DCs can be used as an indicator of the efficacy of immu-
notherapy for tumor patients [93].

Immune checkpoints
Immune checkpoint (IC) refers to programmed death 
receptors and their ligands. Immune checkpoint block-
ade (ICB) therapy based on programmed death recep-
tor (PD-1) and its ligand (PD-L1) can improve the host 
immune system’s aggression against tumor cells by inhib-
iting the binding of PD-1 and PD-L1 [94]. The basic 
principle of ICB therapy is based on the activation mech-
anism of immune cells called T cells. Programmed death 
receptors are expressed on the surface of T cells and their 
ligands are expressed on tumor cells and myeloid sup-
pressor cells. The combination of programmed death 
receptor and its ligand can cause T cells to fail to kill 
tumor cells, so that tumor cells can escape the immune 
surveillance of the host. Therefore, ICB therapy based 
on PD-1/PD-L1 can improve the host immune system’s 
aggression against tumor cells by inhibiting the combina-
tion of programmed death receptor and its ligand [95]. 
Cytotoxic T lymphocyte antigen-4 (CTLA-4) is another 
classical immune checkpoint and can be phosphorylated 
to activate phosphoinositide 3-kinase (PI3K) pathways 
to achieve dephosphorylation of the CD3ζ chain, which 
limits the signaling potential of the TCR. There are also 
other important ICs, such as lymphocyte activation gene 
3 (LAG-3), TIM-3, Exostosin-like glycosyltransferase 
3 (EXTL3), V-domain Ig suppressor of T cell activa-
tion (VISTA), and indoleamine 2,3-dioxygenase (IDO) 
[96–98]. In 2011, the US Food and Drug Administra-
tion (FDA) approved the first ICB antibody Ipilimumab 
for advanced melanoma, and tumor immunotherapy 
has received unprecedented attention and development 
since then [99]. In 2018, the Nobel Prize in Physiology 
or Medicine was awarded to James Allison and Tas-
uku Honjo for their outstanding contributions to ICB 
therapy of cytotoxic T lymphocyte antigen-4 (CTLA-4) 
and PD-1/PD-L1 signaling pathways, respectively [100]. 
Together, ICB therapies open the possibility of including 
TME-based markers for selecting patients who are likely 
to respond to these specific therapies and pave the way to 
personalized medicine in oncology [101].

Exosomes
In TME, cell-to-cell communication is one of the impor-
tant factors affecting tumor progression. Exosomes, as 
important signal carriers of cell-to-cell communication 

in TME, have attracted much attention in recent years 
[102]. Exosome refers to the extracellular sac with lipid 
bilayer membrane structure formed by cells under physi-
ological and pathological conditions through “endo-
cytosis-fusion-efflux” and other regulatory processes 
[102], mainly containing proteins, mRNA, micro-RNA, 
and cytokines. Exosomes are involved in many impor-
tant pathophysiological processes, including remodeling 
TME, mediating specific cellular communication, regu-
lating angiogenesis, immune escape, and distal metas-
tasis in TME, thereby regulating tumor genesis and 
development [103]. There are conflicting mechanisms 
between immune promotion and immunosuppression of 
exosomes. Tumor-derived exosomes can both stimulate 
and inhibit specific and non-specific immune responses 
[104]. Exosomes containing tumor-associated antigens 
can be effectively absorbed by antigen-presenting cells, 
such as DCs, resulting in anti-tumor effects [105]. In 
addition, exosomes produced by premetastatic tumors 
trigger a broad innate immune response through immune 
monitoring, leading to the elimination of cancer cells in 
the premetastatic niche [106]. Exosomes are involved in 
immune suppression. Exosomes isolated from plasma 
of head and neck cancer patients can effectively induce 
apoptosis of CD8+ T cells, inhibit proliferation of CD4+ 
T cells, and enhance immunosuppression of regulatory T 
cells. Razzo et  al. [107] confirmed that a single intrave-
nous injection of tumor-derived exosomes was sufficient 
to accelerate tumor progression in mice with OSCC pre-
cancerous lesions and reduced the migration of immune 
cells to tumors.

Physicochemical microenvironment
Due to the rapid proliferation of tumor cells, glucose and 
energy are consumed seriously, and oxygen is exhausted, 
which leads to the increase of lactic acid level, intersti-
tial pressure, and acidification of microenvironment in 
tumor tissues [108].

In normal tissues, extracellular pH is tightly regulated, 
while dysregulation of pH often occurs in tumor micro-
environment (pH 6.7 ~ 7.1). It is mainly due to anaerobic 
glycolysis and lactic acid produced by tumor cells. The 
pKa value of lactic acid is approximately 3.9, which is 
always lower than the pH value of tumor microenviron-
ment, so it usually exists in the form of lactate and H+ 
ions. In addition, CO2, produced by respiration synthe-
sizes, can be metabolized into H2CO3 under the action 
of carbonic anhydrase, which can be dissociated into 
HCO3

− and H+ ions [109]. Moreover, abnormal blood 
perfusion and the absence of functional lymphatic ves-
sels further limit acid excretion from the TME. TME can 
promote degradation of ECM, leading to local invasion 
of tumor cells [110]. Acidity is a common characteristic 
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in tumor microenvironment, while delivery systems 
targeting low pH of tumor tissues can be developed to 
selectively deliver drugs to tumor cells, so as to achieve 
specific killing of tumors [111].

Hypoxia is another important feature of TME, which 
can accelerate the survival and invasion of tumor cells 
[112]. Hypoxic is often considered as a major adverse 
driver of immunotherapy resistance, resulting in gene 
mutations, transformation of signal transduction, and 
activation of effector molecules [113, 114]. In a hypoxic 
environment, HIF-1α loses its degradation properties and 
binds to HIF-1β to form transcriptionally active dimers 
[115]. These dimers can interact with transcriptional 
coactivators to induce transcription regulation of target 
genes associated with immune escape. Hypoxia regu-
lates tumor immunomodulatory process: (1) Hypoxia can 
recruit various immunosuppressive cells, mainly affect-
ing Tregs, TAM, and marrow-derived suppressor cells 
(MDSCs), therefore promoting the immune tolerance of 
tumor cells; (2) Hypoxia can upregulate the expression of 
inhibitory immune checkpoint on the surface of tumors, 
thus inhibiting the specific function of T cells and evad-
ing host immune surveillance [116]; (3) Autophagy can 
be induced in a hypoxic environment. Autophagy is a 
key regulator of cell viability, clearing dysfunctional orga-
nelles and preventing the progression of cancer [117]. 
Nevertheless, advanced tumors can degrade aggregates 
of harmful proteins [118], remove ROS [119], and pro-
mote recruitment of Treg cells [120] by autophagy, ulti-
mately achieving immune escape; (4) Hypoxic-mediated 
immune effector cell inhibition. Immune effector cells, 
such as T cells, DCs, and NK cells, were inhibited in 
hypoxic environment. Hypoxia not only inhibits the abil-
ity of CTL to melt tumor cells but also greatly affects 
the proliferation and activity of CTL and ultimately fails 
to provide enough CTLs to eliminate tumor cells [121]. 
Downregulated expression of costimulatory molecules of 
DCs in hypoxic environment failed to effectively induce 
T cell activation [122].

In summary, the occurrence, development, metastasis, 
and recurrence of oral cancers are inseparable from spe-
cific tumor immune microenvironment. With the deep 
understanding of TME, the specific cancer immunother-
apy will dramatically alter the landscape in fundamental 
researches and clinical application of oral cancers.

Immunotherapy for oral cancer
The clinical treatment of tumor is mainly surgery, radi-
otherapy, and chemotherapy [123]. Surgical resection 
is currently the preferred treatment for many early and 
intermediate stage cancers, and can be treated by partial 
or total removal of the lesion site and surrounding tissue. 
However, surgical resection is traumatic and limited. It is 

generally applicable to the primary lesion, unable to elim-
inate the metastatic cancer cells and unable to touch the 
cancer cells in the blood circulation. In addition, surgical 
treatment of patients with higher physical requirements; 
otherwise it will accelerate the spread and metastasis of 
cancer cells due to reduced immunity [124]. Radiation 
therapy is to use radiation to irradiate cancerous tissue 
and destroy the DNA chain of cancer cells to achieve 
local treatment of cancer. Radiotherapy usually has a long 
treatment cycle, high cost, and will produce a variety of 
complications, damage the body function, and weaken 
the body immunity [125]. Chemical treatment usually 
adopts systemic drug treatment, the lack of selectivity, 
will affect normal cells, side effects, although the molec-
ular targeted drugs and new preparations of nanometer 
drug has made significant progress, but the treatment 
effect is not satisfactory, and the cancer is easy to pro-
duce resistance and resistance to chemotherapy drugs, 
tends to increase treatment difficulty [126]. On the other 
hand, the high osmotic pressure of tumor tissue makes 
it difficult for chemotherapy drugs to penetrate into the 
tumor site, which further limits the efficacy of chemo-
therapy. Generally, traditional Chinese Medicine plays 
an auxiliary role in reducing complications from chemo-
therapy or other treatments.

Although the above-mentioned traditional tumor treat-
ment methods can temporarily curb the development of 
tumor, they cannot fundamentally solve the problems of 
tumor recurrence and metastasis. Moreover, oral cancer 
shows a high mutation rate associated with DNA dam-
age caused by smoking and alcohol [127]. Therefore, it 
is urgent to develop new cancer treatment strategies to 
achieve efficient tumor treatment while reducing toxicity 
and improving the quality of life of patients.

Immunotherapy is a new strategy for tumor therapy, 
which applies biotechnology and immunological meth-
ods to improve the specific immune response to tumor 
[128, 129]. Tumor immunotherapy was awarded as the 
most important scientific breakthrough by Science in 
2013 due to its excellent efficacy and innovation [17]. 
In 2020, the Nobel Prize in Chemistry was awarded to 
French microbiologist Emmanuelle Charpentier and 
American biologist Jennifer Doudna for their "develop-
ment of genome editing methods." Immunotherapy has 
outstanding application value in the field of tumor ther-
apy, including adoptive cell immunotherapy, antibody-
based therapy, cytokine therapy, tumor vaccines therapy, 
and gene therapy (Fig. 2).

Monoclonal antibody‑based therapies
Monoclonal antibodies (mAbs) are highly homogeneous 
antibodies produced by a single B cell clone that bind to a 
specific epitope. In 1975, the mAbs technology were first 
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developed by Köhler and Milstein by using B cell hybrido-
mas, with unlimited reproductive ability as well as secret-
ing specific antibodies [130]. In 1997, Rituximab was the 
first mAb approved by FDA for the immunotherapy of B 
cell non-Hodgkin’s lymphomas by targeting CD20 [131]. 
Benefiting from the rapid development of immunology 
and protein engineering, mAbs immunotherapy is cur-
rently the fastest growing immunotherapy. These drugs 
can recruit T cells to the tumor site, directly target the 
tumor cells, change the host’s response to the tumor, and 
thus inhibit or even eliminate the tumor [132, 133]. Fur-
thermore, mAbs are capable to achieve anti-tumor angi-
ogenesis by inhibiting the oxygen supply and nutrient 
transport of tumor cells [134]. After decades of research 
and development, mAbs have shown unique advantages 
and made great progress in the field of cancer and other 
major diseases, and they are also the fastest growing and 
most promising development direction in the field of 
medicine. There are several ongoing studies with mAbs 
in oral cancers related to the key words (“oropharyngeal 
cancer” OR “oral cancer” OR “oral cavity cancer”) and 
(“Monoclonal antibodies” OR “Monoclonal antibody” 
OR mAbs OR mAb) from ClinicalTrials. Gov. As shown 
in Table 1, there are 9 clinical trials, which include 4 anti-
angiogenesis mAbs and 5 immune checkpoint inhibi-
tors. In addition, there are several other targets were also 

important for monoclonal antibody-based oral cancer 
clinical treatment, including receptor tyrosine-protein 
kinase erbB-3 [135], nucleophosmin [136], and c-Met 
protein with tyrosine kinase activity [137]. Moreover, 
monoclonal antibodies have shown great potential in 
the prevention of oral cancer. Oral proliferative verru-
cous leukoplakia (OPVL) is a rare refractory leukoplakia, 
which is a precancerous lesion of oral cancer. It is likely 
to develop into oral squamous cell carcinoma or verru-
cous carcinoma. Nivolumab shows potential to shrink 
the white lesions in the participant’s mouth and reduce 
cancer risk and is undergoing clinical trial for prevention 
of OPVL (NCT03692325).

Tumor microenvironment can induce immune toler-
ance of tumor-specific T cells, weaken T cell function, 
and lead to immune escape [138]. Among them, the main 
strategy of tumor cells to achieve immune escape is over-
expression of immune checkpoint molecules. Immune 
checkpoint inhibitors (ICIs) are one of the most promis-
ing immune-based interventions. Blockade of immune 
checkpoint signaling pathway is capable to activate 
anti-tumor immune response and shows extraordinary 
clinical application value. The PD-1/PD-L1 blockade 
has been identified as a potential therapeutic pathway 
to inhibit the activation of T cells and cytokine produc-
tion in tumor cells [139, 140]. So far, four mAbs have 

Fig. 2  Immunotherapy strategies for oral caners
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been approved against PD-1/PD-L1 blockade in clinical 
studies for oral cancer treatment, including cemiplimab 
(NCT04398524), nivolumab (NCT03021993), sintili-
mab (NCT05000892), and toripalimab (NCT04825938). 
OX40 is a costimulatory molecule that can enhance T 
cell immunity. MEDI6469, an anti-human OX40 neoad-
juvant antibody, was performed in a phase I clinical trial 
(NCT02274155) prior to surgery. The results demon-
strated that anti-OX40 mAb was safe and could induce 
the activation and proliferation of T cells in hosts, sug-
gesting a potential clinical strategy [141]. Furthermore, 
mAbs blocking other immune checkpoint receptors, 
particularly CTLA-4, TIM-3, LAG-3, and IDO, have 
attracted worldwide attentions due to their impressive 
results [142]. Nevertheless, the overall response rate of 
mAbs in the treatment of oral cancers should be further 
improved.

Tumor angiogenesis is a complex process includ-
ing vascular endothelial matrix degradation, endothe-
lial cell migration and proliferation, vascular branching, 
and formation of new basement membrane [143]. Due 
to abnormal structure and imperfect vascular matrix of 
tumor vessels, tumor cells can directly penetrate into 
blood vessels to form metastasis in distant sites without 
a complex invasion process [144]. Benign tumors have 
little angiogenesis and slow blood vessel growth, while 
malignant tumors demonstrate dense angiogenesis and 
rapid growth. Therefore, angiogenesis plays an impor-
tant role in the development and metastasis of tumor, 
and inhibition of this process can significantly prevent 
the development and metastasis of tumor tissue [145]. 
As an anti-VEGF mAb, Bevacizumab was first approved 
by FDA for metastatic colorectal cancer treatment in 
2004 and spread to non-small cell lung cancer, glioblas-
toma, metastatic renal cell carcinoma, advanced cervical 

cancer, drug-resistant ovarian cancer, metastatic hepato-
cellular carcinoma, and oral cavity carcinoma et al. [143]. 
There are 2 clinical trials of Bevacizumab for oral cancer. 
National Cancer Institute (NCI) has completed its pri-
mary outcome measure on March 2010 in Phase I clini-
cal trial (NCT00023959). M.D. Anderson Cancer Center 
is ongoing its Phase I clinical trial (NCT01552434). This 
study will evaluate the side effects and best dose of Beva-
cizumab alone or in combination with other drugs. Based 
on EGFR-targeted therapy, two clinical trials were per-
formed in the treatment of oropharyngeal carcinoma. 
Eastern Cooperative Oncology Group evaluated the 
effectiveness of cetuximab with cisplatin for metastatic 
or recurrent head and neck cancer patients by the ran-
domized double-blinded phase III trial (NCT00003809). 
Wang et  al. carried out a prospective phase II trial to 
evaluate the efficacy and safety of anti-EGFR monoclonal 
antibody combined with intensity-modulated radiation 
therapy in locally advanced oropharyngeal carcinoma 
(NCT04508829).

Adoptive cell transfer
Adoptive cellular immunotherapy (ACI) is an important 
method in tumor biotherapy. ACI refers to the transfer of 
tumor patients with anti-tumor activity of immune cells, 
directly killing tumor or stimulate the body’s immune 
response to kill tumor cells, so as to achieve the purpose 
of tumor treatment [146]. ACI can be used in clinical 
treatment of cancer patients alone, more importantly, as 
a supplement to surgery, radiotherapy, and chemother-
apy. Currently, the clinical research and application of 
ACI therapy cells mainly include lymphokine-activated 
killer (LAK) cells, chimeric antigen receptor T (CAR-
T) cells, CD3AcAb-activatived killer (CD3AK) cells, 
cytokine-induced killer (CIK) cells, and DC cells [147].

Table 1  Monoclonal antibody-based trials for oral cancers

PD-1 Programmed cell death-1; VEGF-A Vascular endothelial growth factor A; EGFR Endothelial growth factor receptor; OX40 (CD134) A member of the tumor necrosis 
factor family of receptors

Product name Sponsor Target Estimated date 
of completion

Phase Status Identifier

Cemiplimab ISA Pharmaceuticals PD-1 November 2024 II Recruiting NCT04398524

Bevacizumab National Cancer Institute (NCI) VEGF-A March 2010 I Completed NCT02002182

Anti-EGFR monoclonal antibody Fudan University EGFR December 2020 II Recruiting NCT04508829

Nivolumab Medical University of South Carolina PD-1 November 2021 I/II Completed NCT03021993

Cetuximab Eastern Cooperative Oncology Group EGFR April 2004 III Completed NCT00003809

Sintilimab Sun Yat-Sen Memorial Hospital of Sun 
Yat-Sen University

PD-1 October 2027 II Not yet recruiting NCT05000892

Toripalimab Sun Yat-Sen Memorial Hospital of Sun 
Yat-Sen University

PD-1 June 2027 II Not yet recruiting NCT04825938

Anti-OX40 antibody Providence Health & Services OX40 October 2022 I Active, not recruiting NCT02274155

Bevacizumab M.D. Anderson Cancer Center VEGF March 2022 I Active, not recruiting NCT01552434



Page 10 of 19Liu et al. European Journal of Medical Research          (2022) 27:198 

CAR-T cell therapy, one of the most important ACI, 
has obtained obvious success against hematological 
tumors by targeting tumor antigens [148]. To obtain 
CAR-T cells, T cells are isolated from patient’s periph-
eral blood, then the CARs are transduced by genetic 
engineering technique to achieve the targeted recogni-
tion of tumor cells. After cell amplification, the autolo-
gous CAR-T cells are infused back into patients [149]. 
In 1993, Zelig Eshhar et al. first proposed CAR-T treat-
ment [150]. Over the next 3 decades, this technology has 
gone through five generations and gradually matures. The 
latest generation of CAR-T cells contains CD3ζ chain 
for signal transduction, a co-stimulatory molecule for 
activation and proliferation, and intracellular domains 
of cytokine receptors [143, 151]. Mei et  al. constructed 
MUC1-targeting CAR-MUC1-IL22 T cells and validated 
the cytotoxic function in human tongue squamous car-
cinoma cells. These cells showed an effective cytotoxic 
function against tumor cells [152]. Chan and co-workers 
screened out CD70 CAR-T cells among nine potential 
targets and evaluated their anti-tumor effect in human 
oral squamous cell carcinomas. The results demon-
strated the specific recognition and efficient elimination 
of CD70-positive cancer cells and provided a potential 
CAR-T target [153]. Recently, Yang et al. constructed an 
all-in-one CAR-T cells by coupling anti-human epider-
mal growth factor receptor 2 (anti-HER2) CAR signaling 
and clustered regularly interspaced short palindromic 

repeats interference (CRISPRi)-mediated PD-1 gene sup-
pression. These symphysis CAR-T cells reversed PD-1/
PD-L1 immune checkpoint inhibition and promoted the 
persistence and effectiveness against HER2-expressing 
human head and neck squamous cell carcinoma [154].

Although CAR-T therapy has obtained amazing 
achievements (Fig.  3), the potential severe toxicities 
still limit their widespread application, mostly cytokine 
storms, which can induce high fevers and even multi-
organ dysfunction [155]. In addition, the infiltration of 
solid tumors is another major obstacle for CAR-T ther-
apy. Therefore, degradation of tumor extracellular matrix 
or regulation of tumor microenvironment are expected 
to be the effective ways to improve the infiltration of 
CAR-T cells [156]. Significantly, the immunosuppres-
sive microenvironment of tumors further hinders the 
effectiveness of CAR-T therapy. Combining immunosup-
pressive microenvironmental regulation strategies with 
CAR-T cells may provide a synergic anti-tumor thera-
peutic effect [157].

Cytokine therapy
Cytokines are generally produced by stimulated 
immune cells and shows high efficiency. They can 
directly stimulate immune effector cells and stromal 
cells at the tumor site and enhance the killing effect of 
immune cells [158]. Recently, there are several cytokine 
drugs approved by FDA, such as high-dose IL-2 for the 

Fig. 3  Schematic diagram of CAR-T therapy
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treatment of melanoma and kidney cancer [159], and 
IFN-α for the adjuvant treatment of stage III melanoma 
[160]. IL-12 works on activated T and NK cells and has 
a wide range of biological activities, acting on lympho-
cytes by regulating activators of the transcriptional 
protein STAT4. IL-12 is required for T cell independ-
ent induction of IFN-γ and plays an important role in 
the differentiation of Th1 and Th2 cells [161]. Yang and 
colleagues illustrated that the receptor of IL-12 family 
member (IL-23) contributed for the tumor lymph node 
metastasis of oral cancer [162]. IFN-γ belongs to type II 
interferon, which is mainly produced by NK and NKT 
cells and has anti-proliferative effect on transformed 
cells, and can strengthen the antiviral and anti-tumor 
effects of type I interferon [163]. Ma et  al. detected 
the decreased expression of IFN-γ mRNA and protein 
in oral cancer tissues, which was negatively correla-
tive with IFN-γ methylation rate, involving in the pro-
cess of tumorigenesis of oral cancer [164]. GM-CSF 
is the earliest found cytokine that has effects on DC 
cells. GM-CSF induces the differentiation of bone mar-
row dendritic cells (BMDCs), promotes the immune 
response of Th1 cells, induces angiogenesis, and influ-
ences the development of allergic inflammation and 
autoimmune diseases [165]. TNF-α belongs to the TNF 
superfamily of cytokines, which is a multifunctional 
molecule regulating biological processes. TNF-α can 
not only kill tumor cells directly but also induce imma-
ture DC to differentiate into mature DC [166]. There 
are several ongoing studies with mAbs in oral cancers 
related to the key words (“oropharyngeal cancer” OR 
“oral cancer” OR “oral cavity cancer”) and (“cytokine 
therapy” OR cytokines OR IFN-α OR IL-2 OR TNF-
α) from ClinicalTrials. Gov. As shown in Table 2, there 
are 8 clinical trials, which include 4 IFN-α, 3 interleu-
kin, and 1 salivary cytokine. With the further study 

of cytokines, more factors will be applied to tumor 
immunotherapy.

Tumor vaccines
Tumor vaccine is a specific, safe, and tolerable cancer 
treatment strategy. Currently, FDA has approved two 
preventive vaccines for the treatment of human papil-
lomavirus (HPV) and hepatitis B virus, which can cause 
liver cancer [167]. HPV is etiologically involved in cer-
vical cancers mainly through inactivation of tumor 
suppressor proteins, such as p53 and pRB. HPV is con-
sistently and more frequently detected in cancers of the 
oropharynx and tonsil than at other head and neck sites 
[168]. In 2010, PROVENGE (Sipuleucel-T), an immune-
based vaccine, was approved by FDA as the first thera-
peutic oncology vaccine for prostate cancer [169]. In 
addition, multiple tumor vaccines combined with check-
point blocking modulators or cytokine therapies are eval-
uated in clinical trials with potential clinical application 
in solid tumors or metastatic tumors [170].

The anti-tumor process of tumor vaccines as follows: 
(1) Tumor-specific antigens are absorbed by antigen-
presenting cells and further processed by DCs into short 
peptides that facilitate the presentation of MHC mol-
ecules, which are presented to initial CD8+ and CD4+ T 
cells by MHC I or MHC II, respectively. Antigenic pep-
tides are recognized by TCR on the surface of T cells and 
provide the first signal of activation to T cells. (2) DCs 
are further activated and the expression of costimulatory 
molecules (B7 molecules) on cell surface is upregulated. 
The B7 molecules can bind to the CD28 molecule on T 
cells, providing a second signal for T cells to activate. (3) 
After the initial activation of CD8+ and CD4+ T cells, 
CD8+ T cells further proliferate and differentiate into 
effector T cells with tumor-killing ability, while CD4+ T 
cells mainly differentiate into Th1 and Th2 cells under the 
stimulation of different cytokines to assist cellular and 

Table 2  Cytokine therapy clinical trials for oral cancers

IL-12 interleukin-12; IFN-α interferon alfa

Cytokines Sponsor Country Estimated date of 
completion

Phase Status Identifier

IL-12 NYU Langone Health United States May 2009 Completed NCT00899821

IL-12 or GM-CSF National Cancer Institute (NCI) United States May 2007 II Completed NCT00019331

PEG-IFN-α-2b M.D. Anderson Cancer Center United States March 2006 II Completed NCT00276523

IL-2 gene H. Lee Moffitt Cancer Center and 
Research Institute

United States June 2004 II Completed NCT00006033

IFN-α Eastern Cooperative Oncology Group United States May 2009 III Completed NCT00054561

IFN-α Hoag Memorial Hospital Presbyterian United States February 1999 II Completed NCT00002506

Salivary cytokines University Hospital, Basel, Switzerland Switzerland January 202 Completed NCT02807519

PEG-IFN-α-2b Dartmouth-Hitchcock Medical Center United States November 2002 I Completed NCT00014261
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humoral immunity of the host, respectively. (4) Effector 
T cells circulate and infiltrate into tumor tissues, rec-
ognize, and kill tumor cells. The killed tumor cells can 
further provide tumor antigens, amplifying the immune 
response [171, 172].

There are mainly three types of tumor vaccines, includ-
ing inactivated vaccines, protein/polypeptide vaccines, 
and nucleic acid-based vaccines [173]. Live tumor cells 
can produce immunosuppressive cytokines and may 
form new tumors in vivo [174]. However, inactivated vac-
cines use TAAs from tumor cells excised from patients 
(autologous tumor cells) or cultured tumor cells (allo-
geneic tumor cells) as antigen sources, which are physi-
cally or chemically inactivated and added with adjuvants 
as tumor vaccines [175, 176]. A major advantage of using 
tumor cells as an antigen source is that there are a series 
of mutated tumor antigens on tumor cells that are more 
immunogenic than generic tumor antigens and can syn-
ergistically enhance the body to produce specific immune 
response [174]. Protein/polypeptide vaccines are mainly 
derived from protein fragments or intact proteins specifi-
cally expressed by tumor cells. Polypeptide vaccines are 
generally obtained by chemical synthesis, saving time, 
and cost [177]. Protein vaccines are achieved by recom-
binant protein technology [178]. Many preclinical and 
clinical trials have confirmed that protein/polypeptide 
vaccines are safe and have high clinical application value 
[177, 179]. However, protein/polypeptide vaccines usu-
ally target only one or more TAAs, so a combination of 
antigens is required to induce stronger tumor-specific 
T cell responses [37, 180, 181]. More than 70 percent of 
oropharyngeal cancers are associated with human pap-
illomavirus infection. Therefore, HPV vaccine can pre-
vent and treat oropharyngeal cancer [182]. In 2020, FDA 
approved an expanded indication of Gardasil 9 for the 
prevention of oropharyngeal and other cancer caused 
by HPV [183]. These vaccines were mainly developed 
against E6 and E7 proteins in clinical trials. Vaccines 
based on nucleic acids (DNA or RNA) are a promising 
vaccine platform. In the 1990s, scientists discovered that 
plasmid DNA can induce a strong antibody response 
against the antigens it encodes [184]. Nucleic acid vac-
cines have many advantages. First, nucleic acid vaccines 
allow simultaneous delivery of multiple antigens cover-
ing various TAAs or tumor mutations, while simultane-
ously activating the body’s humoral and cellular immune 
responses, increasing the possibility of overcoming vac-
cine resistance. Secondly, unlike many peptide-based 
vaccines, DNA vaccine, encoding full-length tumor anti-
gen, allows the APC cells present at the same time or 
cross-presented with class I and class II specific human 
leukocyte antigen (HLA) in patients with multiple 
epitopes, therefore stimulating a wider range of T cell 

response [185]. More importantly, nucleic acid vaccines 
are non-infectious and do not contain contamination 
from protein or viral sources during production and are 
therefore considered to be well tolerated for both preven-
tion and treatment [173, 186]. Messenger RNA (mRNA) 
vaccines are an attractive alternative to DNA vaccines 
that have emerged in recent years for infectious disease 
prevention and anticancer therapy. On 18 November 
2020, Pfizer announced the results of a Phase III clini-
cal trial of BNT162b2 mRNA vaccine jointly developed 
with BioNTech in Germany, which showed a 95% protec-
tive efficiency. On December 31 2020, the World Health 
Organization (WHO) designated Pfizer/BioNTech’s 
mRNA vaccine as available for emergency use, the first 
COVID-19 vaccine authorized by WHO. In addition to 
helping the world fight an urgent pandemic, the mRNA 
vaccine has greatly advanced the field of vaccine devel-
opment. In a sense, the novel Coronavirus pandemic has 
hastened the development of mRNA vaccine, ushering 
in a new era of vaccine development. It is a predictable 
event that such vaccines, which can be produced quickly 
and cheaply, will soon appear in the field of cancer treat-
ment, bringing benefits to human health [186, 187]. 
However, the problems of mRNA instability, low in vivo 
delivery efficiency and high innate immunogenicity still 
need to be further solved [188].

There are several ongoing studies with cancer vac-
cination in oral cancers related to the key words (“oro-
pharyngeal cancer” OR “oral cancer” OR “oral cavity 
cancer”) and vaccine from ClinicalTrials. Gov. As shown 
in Table 3, there are 17 clinical trials, which include 10 
HPV antigen-related vaccine trials, 4 protein/polypep-
tide-based vaccine trials, 2 vaccine-combined monoclo-
nal antibody therapy, and 1 DC-based vaccine. In general, 
HPV antigen-related vaccines and combined therapies 
with other strategies are the primary strategies for oral 
cancers. In addition, the development of neoantigen and 
nucleic acid vaccine will be the potential prospects for 
oral cancer clinical treatment.

Gene therapy
Gene therapy can be regulated at the nucleic acid level 
to achieve the purpose of tumor treatment, including 
therapeutic genes, nucleic acid vaccine, RNA inter-
ference, and gene probe technology [189–192]. Gene 
therapy can also target the genes those are involved in 
the immune system interactions. Oncolytic virus is a 
natural or genetically engineered virus. It belongs to a 
special gene therapy method that can selectively repli-
cate in tumor cells to cause tumor cell lysis and activate 
the hosts’ immune system. Oncolytic virus mediates 
anti-tumor activity mainly through the following ways: 
selectively replicating in tumor cells, leading to tumor 
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lysis. The tumor-associated antigen released by lysis 
activates the immune response of the host, thereby 
removing tumor cells. Viral infection also causes tumor 
cells to release cytokines, which in turn clear metastatic 
tumors [193]. In addition, gene therapy strategies tar-
geting immune-related genes of oral cancer are also 
an important direction for future research. Currently, 
there are several ongoing studies based on gene-based 

immunotherapy in oral cancers. As shown in Table  4, 
there are 5 clinical trials, involving cytokines, Car-T, 
and gene vaccines. With the continuous innovation of 
molecular biology, cell biology, and clinical medical 
technology, gene therapy will play an important role in 
the process of overcoming the intractable tumor and is 
expected to become a routine strategy for tumor treat-
ment in the future [194].

Table 3  Tumor vaccination clinical trials for oral cancers

CEA Carcino-embryonic antigen; GM-CSF granulocyte/macrophage colony-stimulating factor; HPV human papillomavirus; IL-12 interleukin-12; PD-L1 programmed cell 
death-ligand 1; Ras Rat sarcoma; TGF-β transforming growth factor-β; TRICOM Triad of costimulatory molecules

Vaccines Sponsor Nationality Estimated date 
of completion

Phase Status Identifier

HPV Vaccination Oslo University Hospital Norway February 2017 Completed NCT02934724

ADXS-HPV Andrew Sikora United States August 2023 II Active NCT02002182

Utomilumab and ISA101b M.D. Anderson Cancer Center United States June 2022 II Active NCT03258008

HPV Vaccine PRGN-2009 Alone or 
in Combination with Anti-PD-L1/
TGF-Beta Trap (M7824)

National Cancer Institute (NCI) United States October 2023 I/II Recruiting NCT04432597

HPV Vaccination Regenstrief Institute, Inc United States June 2015 Completed NCT02551887

HPV Vaccination Regenstrief Institute, Inc United States May 2016 Completed NCT02558803

HPV Vaccination Boston Medical Center United States April 2019 Completed NCT03346915

HPV Vaccination National Cancer Institute (NCI) United States July 2022 Active NCT00867464

Recombinant Fowl Pox Vaccine 
rF-CEA (6D)/TRICOM With GM-CSF

National Cancer Institute (NCI) United States January 2013 I Completed NCT00028496

TheraT® Vectors combined with 
chemotherapy

University of Chicago United States January 2026 I/II Not yet recruiting NCT05108870

PDS0101 + NHS-IL12 + M7824 National Cancer Institute (NCI) United States January 2023 I/II Recruiting NCT04287868

Tumor-specific mutated Ras 
peptides and IL-2 or GM-CSF

National Cancer Institute (NCI) United States May 2007 II Completed NCT00019331

HPV Vaccination National Cancer Institute (NCI) United States April 2015 I Completed NCT00019110

HPV Vaccination University of Birmingham United Kingdom September 2015 Completed NCT01330147

Recombinant fowlpox-TRICOM National Institute on Deafness 
and Other Communication Disor-
ders (NIDCD)

United States April 2015 I Completed NCT00021424

HPV16-E711-19 Nanomer Dana-Farber Cancer Institute United States May 2023 I/II Active NCT02865135

DCs loaded with wild-type p53 
peptides with T-helper peptide 
epitope

Robert Ferris United States March 2014 I Completed NCT00404339

Table 4  Gene therapy-based clinical trials for oral cancers

IL-12 interleukin-12; Allovectin-7® HLA-B7/β-2 microglobulin plasmid DNA/lipid complex; E6 TCR E6 T cell receptor; HPV Human papilloma virus

Product name Sponsor Nationality Estimated date of 
completion

Phase Status Identifier

IL-12 gene medicine Dana-Farber Cancer Institute United States November 2000 I/II Completed NCT00004070

Allovectin-7® Vical United States June 2002 III Completed NCT00050388

E6 TCR gene therapy National Cancer Institute (NCI) United States June 2016 I/II Completed NCT02280811

TheraT® expressing 
HPV-specific antigens

Hookipa Biotech GmbH United States June 2022 I/II Recruiting NCT04180215

HPV-Specific T Cells Baylor College of Medicine United States October 2022 I Active, not recruiting NCT02379520
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Challenges and perspective
The occurrence of malignant tumors, including oral can-
cers, results from the accumulation of genetic mutations 
and epigenetic modifications that lead to tumor-related 
phenotypes, including unlimited proliferation, apop-
tosis resistance, angiogenesis, invasion, and metastasis 
[195]. Moreover, in the process of cancer development, 
the tumor and the surrounding microenvironment con-
stantly interact and evolve, forming characteristics con-
ducive to tumor growth and invasion, leading to tumor 
development and metastasis [196]. For most patients, 
metastatic tumors remain an incurable disease that can-
not be cured with traditional treatments. The develop-
ment of tumor immunotherapy has brought hope for the 
cure of tumors, especially advanced tumors. Different 
from traditional therapeutic strategies, tumor immuno-
therapy mainly activates the host immune system and 
then mobilizes specific immune cells to recognize and 
kill tumor cells [197]. The immunotherapy can achieve a 
persistent anti-tumor response due to the host’s immune 
memory effect. Therefore, immunotherapy can not only 
effectively inhibit the primary tumor but also further pre-
vent tumor recurrence and inhibit metastasis, making it 
the only emerging therapy that is expected to completely 
cure tumors.

For decades, tumor immunotherapy has changed the 
treatment pattern of multiple solid tumors and hema-
tological malignancies, bringing good news to tumor 
patients, especially patients with advanced malignant 
tumors or multidrug resistance. However, tumor immu-
notherapy is still faced with many difficulties, such as low 
immune response rate and lack of effective and reliable 
efficacy prediction markers, which is one of the biggest 
challenges to achieve accurate personalized immuno-
therapy. In addition, TME is a complex heterogene-
ous ecosystem, and the occurrence, development, and 
metastasis of tumor are closely related to the internal and 
external environment of tumor cells. It not only affects 
the growth and metabolism of tumor cells but also affects 
the structure, function, and metabolism of tumor tis-
sues. The various microenvironmental characteristics, 
including hypoxic microenvironment, metabolic micro-
environment, acidic microenvironment, and mechani-
cal microenvironment, have attracted the attentions of 
scientists and clinicians. Combining drugs that modulate 
TME with standard therapies, such as traditional chem-
otherapy regimens with drugs that improve the acidic 
environment of tumors, promises exciting therapeutic 
results.

With the continuous emergence and innovation of 
new technologies and new methods, and the increas-
ingly close interdisciplinary integration, tumor immu-
notherapy ushers in the rapid development, showing 

great potential to cure tumors. However, due to the 
heterogeneity of tumor and the difference of individual 
immune environment, immunotherapy cannot show 
good therapeutic effect in all individuals. The selection 
of specific targets, screening of suitable tumor patients, 
and the combined application of multiple therapies can 
partially solve the current problems of tumor immuno-
therapy. The development of immunotherapy drugs and 
related clinical trials based on multiple targets have pro-
vided a new direction for clinical work and are expected 
to greatly improve the current plight of malignant tumor 
treatment. We look forward to exciting clinical stud-
ies that are underway or will soon be conducted, but we 
clearly recognize that there are still some limitations and 
need to be improved in the current approach to immu-
notherapy drugs and rational application. The develop-
ment of tumor immunotherapy drugs should be based on 
solid and scientific theories and guided by the real clini-
cal needs. In the future, the development of basic medi-
cine, tumor immunology, pharmacy, bioinformatics, and 
other disciplines will further promote the development 
of tumor immunotherapy. Expanding benefit groups and 
improving efficiency are the direction of future research. 
Tumor immunotherapy designed and developed based 
on new theories, new technologies, and new methods 
can safely and effectively enhance the immune system, 
destroy tumor cells, and finally achieve the goal of cure 
with limited toxicity. Immunotherapy has an important 
development prospect and is a potential method for 
future clinical treatment of malignant tumors.

Conclusions
Oral cancer severely affects the appearance, eating and 
even endangers life. There are few safe and efficient clini-
cal treatment strategies for oral cancer, which is mainly 
due the complex tumor immune microenvironment. 
Tumor immunotherapy is the specific killing of tumor 
cells by activating the host’s own immune system, which 
is not only suitable for the treatment of primary tumor 
but also has a specific killing effect on metastatic tumor. 
Therefore, tumor immunotherapy based on TME demon-
strates a potential prospect in clinical anti-tumor therapy. 
Most importantly, a healthy attitude and lifestyle remain 
the first element in the prevention and treatment of oral 
cancer.
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