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Abstract 

Background:  Alzheimer’s disease (AD) as a neurodegenerative disease occupies 3/5–4/5 cases among patients with 
dementia, yet its pathogenetic mechanism remains unclear. Geraniol, on the other hand, is a well-known extract 
from essential oils of aromatic plants and has been proven that it has outstanding neuroprotective effects as well as 
ameliorating influence in memory impairment. Therefore, the present study aims to elucidate the potential of geraniol 
against AD by network pharmacology-based approach combined with molecular modeling study.

Materials and methods:  Firstly, we evaluated the druggability of geraniol by ADME method. Then, we obtained the 
geraniol targets and AD-related targets from multiple open data sources. Afterward, we calculated the intersection 
through a Venn diagram to find common targets, and via Panther classification system to categorize them. In order to 
gain a macroscopic understanding of these common targets, we carried out GO terms and KEGG pathways enrich-
ment analyses, according to which we constructed a compound–target–pathway–disease network. In addition, we 
built a preliminary PPI network which was further analyzed both functionally and topologically. Consequently, five 
hub targets were sorted out. Finally, we conducted molecular docking and molecular dynamic simulation to validate 
our findings.

Results:  In the present study, the pharmacological properties of geraniol were assessed according to ADME and 
Lipinski’s rule, which demonstrate promising druggability. Then, from 10,972 AD-related targets and 33 geraniol 
targets, 29 common targets were identified, among which 38.1% of them are metabolite interconversion enzymes, 
23.8% are protein modifying enzymes, 33.3% are transmembrane receptors, and the rest are transporters. Enrichment 
analyses hint that geraniol is involved in cholinergic synapse, serotonergic synapse, and neuroactive ligand–receptor 
interaction. We also built a preliminary PPI network to investigate the interplay between these targets and their exten-
sive interactions. Then, by functionally clustering the preliminary PPI network, we gained a cluster of proteins which 
formed a subnetwork with score of 8.476, and 22 nodes. Its results of GO terms and KEGG pathways enrichment 
analyses once again suggests that geraniol actively participates in cholinergic synapse, serotonergic synapse, and 
neuroactive ligand–receptor interaction, which are believed to be strongly associated with AD pathogenesis. Besides, 
topological analyses of the preliminary PPI network helped find 5 hub targets (i.e., CHRM3, PRKCA, PRKCD, JAK1, JAK2). 
To verify their interaction with geraniol molecule, we conducted molecular docking, and found that CHRM3 possesses 
the highest affinity in binding, indicating that geraniol molecules are closely bound to each hub target, and CHRM3 

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Open Access

European Journal
of Medical Research

†Ying Liu, Shujing Zhou, Xufeng Huang and Hafiz Muzzammel Rehman 
contributed equally to this work

*Correspondence:  liuyingwj@163.com

1 Department of Cardiology, 6th Medical Centre, Chinese PLA General 
Hospital, Beijing, China
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40001-022-00699-8&domain=pdf


Page 2 of 10Liu et al. European Journal of Medical Research           (2022) 27:93 

Introduction
Alzheimer’s disease (AD) has been a common neurode-
generative disease that occupies 3/5–4/5 cases among 
patients with dementia, yet its pathogenetic mechanism 
of AD is very complicated and thus remains unclear [1, 
2]. The current hypotheses include Aβ amyloid cascade 
theory, the theory of microtubule-associated protein 
abnormalities, the theory of central cholinergic dam-
age, the theory of infection, the abnormal growth of gut 
microbes, etc. [3–7]. Due to the blood–brain barrier, 
most of the drugs such as steroid hormones have lim-
ited therapeutic effects on AD, which urges researchers 
to develop new drugs for its prevention and treatment 
[8]. On the other hand, thanks to the rapid development 
of modern bioinformatics, publicly accessible databases 
provide an unprecedented wealth of information to help 
drug discovery. By combining data available in these 
databases with the proper bioinformatical tools, we can 
elucidate the molecular targets of natural compounds [9]. 
One such molecule is geraniol, a well-known component 

of essential oils of aromatic plants and has been proven 
possessing outstanding neuroprotective effects as well as 
ameliorating influence in memory impairment [10–13]. 
Therefore, the present study aims to elucidate the poten-
tial of geraniol against AD by network pharmacology-
based approach combined with molecular modeling 
study.

Figure  1 demonstrates the workflow of the present 
study in a graphical manner.

Materials and methods
Druggability assessment
The sdf file of geraniol’s structure was downloaded from 
PubChem (https://​pubch​em.​ncbi.​nlm.​nih.​gov/) and was 
input into SwissADME (www.​swiss​adme.​ch) [14] that 
provides literature and structure-based pharmacologi-
cal information of geraniol, including molecular weight, 
number of H-bond acceptors and donors, topological 
polar surface area, GI absorption, blood–brain barrier, 
Lipinski’s rule, etc. From this server, we obtained the 

may serve as a key target of geraniol against AD. It was then further confirmed by molecular dynamic simulation, the 
result of which supports our hypothesis.

Conclusion:  The present study shares a mechanistic insight of the potential of geraniol against AD, giving a reference 
to future experimental studies.
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Fig. 1  Workflow of the present study
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corresponding pharmacological properties for ADME 
and Lipinski’s rule evaluation.

Target identification
We used the sdf file again, but with Swiss Target Pre-
dictor (www.​swiss​targe​tpred​iction.​ch) this time to find 
the putative targets of geraniol [15]. Then, we searched 
from GeneCard (https://​www.​genec​ards.​org) to obtain 
the AD-related targets [16]. Afterward, we used the 
JVenn program (http://​jvenn.​toulo​use.​inra.​fr/​app/​examp​
le.​html) to calculate the intersection of them which are 
their common targets [17]. These targets were then clas-
sified by the Panther classification system (http://​www.​
panth​erdb.​org/) [18].

Enrichment analyses of the common targets
WebGestalt (www.​webge​stalt.​org), as a robust online bio-
informatic toolkit, was used for GO and KEGG pathway 
enrichment analyses of the common targets [19].

Network construction
Based on the results, we constructed the geraniol–tar-
get–pathway–AD network by Cytoscape (v3.9.0) for bet-
ter visualization [20]. In addition, we exerted the list of 
common targets into GeneMANIA, a Cytoscape plug-in, 
to build a preliminary protein–protein interaction (PPI) 
network [21].

Functional clustering and in‑depth enrichment analyses 
of the preliminary PPI network
We used a Cytoscape plug-in, “MCODE” to function-
ally cluster the preliminary PPI network, which created a 
subnetwork [22]. With the newly created subnetwork, we 
conducted GO and KEGG analyses again to gain a more 
comprehensive understanding of the role that geraniol 
may play in the mechanism against AD.

Table 1  Basic pharmacological data of geraniol

MW molecular weight, Hdon hydrogen donor, Hacc hydrogen acceptor, RBN number of bonds that can perform free rotation, TPSA surface sum over all polar 
atoms, primarily oxygen and nitrogen, also including their attached hydrogens, GI absorp gastrointestinal absorption, BBB blood–brain barrier, LogKp an improved 
measurement of skin permeation coefficient, Lipinski Lipinski’s rule of five, an empirical rule to evaluate whether a molecule is suitable to be developed into orally 
administrated drug

Name MW (Da) Hdom Hacc RBN TPSA (Å2) GI BBB LogKp (cm/s) Lipinski

Geraniol 154.25 1 1 4 20.23 High Yes − 4.71 No violation

Fig. 2  Identification of targets. A Venn diagram showing common targets between geraniol and AD. The green circle represents geraniol targets, 
the blue circle represents AD targets. B Pie chart showing different categories of the common targets with corresponding colors and percentages

http://www.swisstargetprediction.ch
https://www.genecards.org
http://jvenn.toulouse.inra.fr/app/example.html
http://jvenn.toulouse.inra.fr/app/example.html
http://www.pantherdb.org/
http://www.pantherdb.org/
http://www.webgestalt.org
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Fig. 3  Enrichment analyses of the common targets. A Bubble plot combined with Sankey diagram demonstrating the top 20 most enriched GO 
terms. B Bubble plot combined with Sankey diagram demonstrating the top 20 most enriched KEGG pathways
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Hub target screening via topological analysis 
of the preliminary PPI network
We used another Cytoscape plug-in, “CytoHubba”, to 
extract a core PPI network that frames the preliminary 
PPI network via intersectional merge of the subnetworks 
created from degree, closeness, and betweenness meth-
ods [23].

Molecular docking verification
To predict the interaction between the targets and the 
compounds, we downloaded the crystal structures of 
the 5 hub targets from PDB library (i.e., 3egy, daj, 2b7a, 
3iw4, 1yrk) and then docked them with geraniol molecule 
on CB-dock platform (http://​clab.​labsh​are.​cn/​cb-​dock/​
php/​blind​dock.​php) based on AutoDock Vina [24, 25]. 
Afterward, we obtained the corresponding affinity energy 
values and the binding sites, the center, and the custom-
ized docking box size. To further validate the binding 
mode, we performed molecular dynamic simulation. 

The simulation was performed by Desmond at 100  ns 
to investigate the binding conformational stability of the 
protein–ligand complex [26]. The stability of the pro-
tein–ligand complex was observed to be maintained dur-
ing the whole 100 ns simulation for compounds based on 
RMSD, RMSF, and hydrogen bond interactions.

Results
Druggability assessment
As usually a molecule fulfilling the parameters of 
RBN < 10, OB ≥ 20%, DL ≥ 0.1, TPSA < 60  Å2, and 
Lipinski’s rule of five (i.e., MW < 500  Da, AlogP < 5, 
Hdon < 5, Hacc < 10) is considered as potential drug-
gable substance, geraniol possessing MW = 154.25  Da, 
Hdom = 1, Hacc = 1, RBN = 4, TPSA = 20.23  Å2, 
LogKp = − 4.71  cm/s, therefore is deemed to be one of 
such molecules that can be further optimized into orally 
administered drug.

Details are shown in Table 1.

Target identification
Through searching, 10,972 AD-related targets and 33 
geraniol targets were found from which 29 of them are 
common targets. They are demonstrated as an intersec-
tion in the Venn diagram in Fig. 2A. After being catego-
rized by the Panther classification system, it appears that 
38.1% of them are metabolite interconversion enzymes, 
23.8% are protein modifying enzymes, 33.3% are trans-
membrane receptors, and the rest are transporters. The 
percentage of each category is indicated in the pie chart 
in Fig. 2B.

Enrichment analyses of the common targets
With the common targets, we conducted GO terms and 
KEGG pathways enrichment analyses to gain a macro-
scopic understanding of their functions, from which we 
found that GO:1901700 (response to oxygen-containing 
compound) is the most enriched GO term, followed by 
GO:0008015 (blood circulation), GO:0003013 (circula-
tory system process), and hsa04725 (cholinergic synapse), 
hsa04726 (serotonergic synapse), hsa00590 (arachidonic 
acid metabolism) are the most enriched KEGG pathways, 
as shown in Fig. 3A, B. The rare data of the enrichment 
analyses can be visited in the Additional file  1 S2_Rare 
data for GO terms and KEGG pathways analyses.

Network construction
Based on the enrichment results, we constructed the 
geraniol–target–pathway–AD network, as shown in 
Fig. 4A, with 56 nodes and 165 edges. For the data used 
during the construction of the network, please visit the 

Fig. 4  Construction of network. A Geraniol–target–pathway–AD 
network. The purple node represents geraniol, the blue node 
represents AD, the green nodes represent their common targets, the 
yellow nodes represent their related KEGG pathways. B Preliminary 
protein–protein interaction (PPI) network organized in degree sorted 
circular layout. The higher the degree of the node in the network, the 
larger the node and the darker the color

http://clab.labshare.cn/cb-dock/php/blinddock.php
http://clab.labshare.cn/cb-dock/php/blinddock.php
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Additional file  1 S1_Rare data for target identification. 
The characteristic path length is 2.421, network density 
is 0.107, the heterogeneity is 0.938, the network cen-
tralization is 0.436. In addition, in Fig.  4B, we built a 
PPI network for deeper analyses to see the logic behind. 
The preliminary PPI network contains 49 nodes and 317 
edges, with 2.087 characteristic path length, 0.190 net-
work density, 0.367 network heterogeneity, and 0.106 
network centralization.

Functional clustering and in‑depth enrichment analyses 
of the preliminary PPI network
By setting K core value to 3 and keeping the rest param-
eters in default values, we functionally clustered the pro-
teins involved in the preliminary PPI network as what 
Fig.  5A shows. The modulation score of the cluster is 
8.476 which consists of 22 nodes representing 22 genes.

Based on these genes, we conducted the GO terms 
and KEGG pathways analyses to have a deeper insight of 
their functions. The results in Fig. 5B, C further suggest 
that geraniol may be against AD by participating in cho-
linergic synapse, serotonergic synapse, and neuroactive 
ligand–receptor interaction, as these pathways have more 

genes involved. The rare data of the enrichment analy-
ses can be visited in the Additional file  1 S3_Rare data 
for GO terms and KEGG pathway analyses of functional 
clustering.

Hub target screening via topological analysis 
of the preliminary PPI network
By using the CytoHubba plug-in, we can make a fur-
ther in-depth analysis of the topology of the network. 
We screen 3 subnetworks with top 10 ranking nodes 
in Fig.  6A–C based on degree, closeness, betweenness 
methods, respectively. Then, these subnetworks under-
went intersectional merge, creating a core PPI subnet-
work in Fig. 6D composed of 5 hub targets: JAK1, JAK2, 
PRKCD, PRKCA, CHRM3.

Molecular docking and molecular dynamic simulation
Molecular docking between geraniol and the hub targets 
was carried out to ascertain the binding mode between 
them. It was found that the best run came with CHRM3 
with the lowest affinity energy of − 5.9 kcal/mol, followed 
by JAK1, JAK2 and PRKCA (all of them are − 5.8  kcal/
mol), and PRKCD (− 4.8  kcal/mol), which suggests that 

Fig. 5  Functional clustering and corresponding GO terms and KEGG pathways enrichment analyses. A The functional cluster detected from the 
preliminary PPI network by MCODE. B Bubble plot showing top 20 most enriched KEGG pathways. FDR values are represented by colors, gene 
counts are represented by bubble size. C Bubble plot showing the top 20 most enriched GO terms. FDR values are represented by colors, gene 
counts are represented by bubble size
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Fig. 6  Screening of the hub targets from preliminary PPI network. A Subnetwork extracted from the preliminary PPI network based on degree 
method. Top 10 targets were selected, among which 2 targets were found to have no connection with the others (thus they were removed). B 
Subnetwork extracted from the preliminary PPI network based on closeness method. C Subnetwork extracted from the preliminary PPI network 
based on betweenness method. D Core subnetwork merged from the intersection of the previous subnetworks
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CHRM3 may serve as the most important player of the 
underlying mechanism against AD. Detailed of the bind-
ing modes are available in the Additional file 1 S4_Rare 
data for molecular docking. We further verified the bind-
ing mode between CHRM3 and geraniol through molec-
ular dynamic simulation which was performed on the top 
hit containing high binding energies. Over the simulation 
period, the projected conformational changes from the 
initial structure were presented in terms of root mean 
square deviation (RMSD). Moreover, structural stabil-
ity, atomic mobility, and residue flexibility at times of 
interaction of protein-hit were expressed with root mean 
square fluctuation (RMSF) values. The RMSD values for 
protein–ligand complex were calculated and given in 
Fig. 7B. RMSD of the complex showed deviation of about 
2 Å at 90 ns and then there was no significant fluctuation 
and the simulation converges, suggesting a good stability 
of the protein–ligand complex. For RMSF, there was not 
much fluctuation observed and the structure was stabi-
lized comparatively and there was no fluctuation where 
ligand made contacts with protein, as shown in Fig. 7C. 
Overall, the ligand showed significant different types of 
intermolecular interactions during the entire simula-
tion including hydrogen bonds, ionic, water bridges, 
and hydrophobic. The residues participating in these 

interactions include ILE 116, TYR 148, SER 151, ASN 
152, TRP 199, ALA 235, PHE 239, TRP 503, TYR 506, 
ASN 507, TYR 529, ASN 507, TYR 529, CYS 532 and 
TYR 533, as shown in Fig. 7D.

Discussion
Although there has been numerous research on geraniol 
and AD separately, to the best of our knowledge, the pre-
sent study is the very first one to integrate network phar-
macology and molecular modeling to give a mechanistic 
insight of the potential mechanisms of geraniol in AD 
treatment.

The network pharmacological analysis identified 10,972 
AD-related targets, 33 geraniol targets, among which 29 
of them are common targets. Among the 29 common 
targets, 38.1% of them are metabolite interconversion 
enzymes, 23.8% are protein modifying enzymes, 33.3% 
are transmembrane receptors, and the rest are trans-
porters. They mainly participate in cholinergic synapse, 
serotonergic synapse, and neuroactive ligand–receptor 
interaction. Earlier progress in neuroscience revealed 
that high density of cholinergic synapse in the human 
central nervous system is critically important in terms 
of memory, learning, as well as attention and thus sig-
nificantly associated with age-dependent neurological 

Fig. 7  Molecular docking and molecular dynamic simulation. A Three-dimensional demonstration of geraniol–CHRM3 complex. B Selected 
important protein–ligand contact points. C RMSD diagram of in 100 ns during molecular dynamic simulation. D RMSF diagram during molecular 
dynamic simulation
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declines, such as AD [6]. Dysregulation of serotoner-
gic synapse was argued to be a major cause of the AD 
in recent years (i.e., the serotonergic hypothesis) [27]. 
Therefore, it is thought that geraniol may exert its effects 
against AD through such neurology-related pathways.

In addition, we constructed a preliminary PPI net-
work aiming to sort out the hub targets. After topo-
logical optimization of the network, 5 hub targets (i.e., 
CHRM3, PRKCA, PRKCD, JAK, JAK2) were screened 
out. CHRM3 has been found to heterodimerize with 
CHRM2 which contributes to memory and cognition 
[11–13, 28]. PRKCA is said to be related to amyloid 
protein formation in AD [29–31]. Besides, previous sci-
entific research has reported the dual role of PRKCD in 
proapoptotic kinase activation and apoptotic caspase 
cascade activation, which is important in the pathogen-
esis of neurodegenerative disorders including AD [32]. 
Clinical studies have also shown that dysregulation of 
the expression of JAK1 and JAK2 associates with brain 
inflammatory processes and neuronal or glial survival, 
which are consequently involved in most brain disor-
ders including the pathogenesis of AD [33]. In short, 
the 5 hub targets are in strong correlation with AD 
pathogenesis and deterioration.

Furthermore, we conducted molecular modeling to 
study the robustness of the interaction between each 
hub target and geraniol molecule. Subsequently, it is 
found that CHRM3 possesses the highest affinity with 
geraniol molecule and thus may serve as the key target 
of geraniol molecule in AD treatment.

In conclusion, the present study shares a mechanistic 
insight of the potential of geraniol against AD, giving a 
reference to future experimental studies.
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