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Abstract 

Stroke is a type of cerebrovascular disease that significantly endangers human health and lowers quality of life. This 
understandably places a heavy burden on society and families. In recent years, intestinal flora has attracted increas-
ing attention from scholars worldwide, and its association with ischemic stroke is becoming a hot topic of research 
amongst researchers in field of stroke. After suffering from a stroke, intestinal microbial dysbiosis leads to increased 
intestinal permeability and activation of the intestinal immune system, which in turn leads to ectopic intestinal bac-
teria and pro-inflammatory cells that enter brain tissue through the damaged blood-brain barrier. This exacerbates 
ischemia-reperfusion injury. Interestingly, after a stroke, some metabolites produced by the intestinal flora attenuate 
ischemia-reperfusion injury by suppressing the post-stroke inflammatory response and promotes the repair of neu-
rological function. Here we elucidate the changes in gut flora after occurrence of a stroke and highlight the immu-
nomodulatory processes of the post-stroke gut flora.
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Background
Stroke is an acute cerebrovascular disease, which can be 
caused by either sudden rupture of cerebral vessels or 
vascular occlusion; this is also referred to as hemorrhagic 
stroke (HS) and ischemic stroke (IS), respectively [1]. 
The incidence of ischemic stroke is significantly higher 
than that of hemorrhagic stroke, accounting for roughly 
80% of the total incidence of cerebrovascular injury. The 
interruption of blood supply to brain, accompanied by 
hypoxia, further cause IS related nerve damage. Ischemic 
stroke was caused by a variety of risk factors and brought 
a heavy burden upon the patients’ family as well as soci-
ety in general [2]. The most important risk factors are 
hypertension, diabetes and atherosclerosis. Ischemic 
stroke is also a complex disease caused by a variety of 
environmental and genetic factors. Long-term domestic 

and foreign studies have shown that the risk factors of 
IS are made up of two categories, namely, non-modify-
ing risk factors [3] (gender, age, genetic factors, family 
history and race.) as well as modifying risk factors [4] 
(hypertension, abnormal blood glucose, hyperlipidemia, 
atrial fibrillation, high homocysteine, and bad living hab-
its.) Intervention refers to the ability of controlling the 
risk factors, especially the most dangerous, which are 
hypertension and diabetes, to reduce the incidence and 
mortality of this disease.

Intestinal flora refers to all microorganisms in the 
human gastrointestinal tract, comprising of between 
15,000 ~ 36,000 bacterial species, which represents 
mostly the Firmicutes and Bacteriodetes phyla [5–7]. 
Beside bacteria, Archaea and eukaryotes, viruses as well 
as bacteriophages are also included in intestinal flora 
[8]. Intestinal flora has the ability to regulate the meta-
bolic activity of the host, as well as regulate the intesti-
nal immune and biological barriers [9]; thus, it has a 
role of maintaining the health state of the host [10]. The 
total number of bacteria and species that makes up the 
intestinal flora can be affected by many factors, such as 
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environment [11], diet [12], medications and genetics. 
Intestinal flora and its surrounding intestinal environ-
ment are collectively referred to as the intestinal micro-
ecosystems, which functions to maintain the homeostasis 
of the internal environment under normal conditions for 
humans and animals. Once the intestinal micro-ecosys-
tems lose its homeostasis, various diseases occur, which 
may also involve the central nervous system [13–15]. 
Intestinal microecosystem disorders can change the 
microenvironment of the intestine, affect the function 
of intestinal absorption and metabolism, subsequently 
affecting the risk factors of IS [16] directly or indirectly. 
In addition, the enteric nervous system, known as the 
human “second brain”, can interact with the central nerv-
ous system, autonomic nervous system [17], hypothala-
mus-pituitary-adrenal axis and other structures to form 
a two-way regulatory axis,  the brain-gut axis. Intestinal 
flora can also decompose fermented food ingredients 
and produce a series of metabolites [18–20] that play an 
important role in the brain-gut axis. It can form a net-
work of nerve, immune and endocrine regulation by 
stimulating neuroendocrine and conduction pathways, 
which is the “flora-gut-brain” axis. Changes in intestinal 
flora can alter the intestinal defence function and intesti-
nal permeability [21], which affects both the enteric nerv-
ous system and central nervous system.

At the same time, intestinal flora plays an impor-
tant role in the development of central nervous system 
[22]. Studies have shown that gut microbiota can regu-
late a series of neurotrophic factors or proteins that are 
involved in brain development and plasticity, such as 
brain-derived neurotrophic factors [23], synaptophysin 
and postsynaptic dense region proteins. The sterile state 
of sterile animals can lead to changes in the nervous 
system, such as increased permeability of blood-brain 

barrier  (BBB). Microglial cells are different from tradi-
tional bacterial colonization animals in morphology and 
function [24]. In addition, intestinal flora is also involved 
in the regulation of central nervous system activities, 
such as anxiety, depression and stress response [25]. Nor-
mal and steady intestinal flora plays a very important role 
in maintaining normal brain function and repair. When 
the balance of the intestinal flora changes, it can increase 
the risk of stroke through different mechanisms.

Intestinal flora and its products cause stroke 
by inducing atherosclerosis
Platelet activation, aggregation and atherosclerotic 
plaque formation are important pathogeneses of 
ischemic stroke (Fig.  1). Recent studies have shown 
that intestinal flora play an important role in the occur-
rence of atherosclerotic plaques. Intestinal flora can 
affect the occurrence of atherosclerosis in three differ-
ent ways: (1) Bacterial infections activates the immune 
system [26] by influencing various immune cells [27]. 
Moreover, TLR expression by macrophages further 
leads to the increase of proinflammatory cytokines 
and chemokines, which accelerates the progression 
of atherosclerotic plaques and leads to the formation 
of vulnerable plaque. Microbes that have been shown 
to promote atherosclerosis include Porphyromonas 
gingivalis [28], Aggregatibacter actinomycetemcomi-
tans, Chlamydia pneumoniae [29, 30] in addition to 
others. (2) Intestinal flora metabolism of food such as 
cholesterol and fat affect the formation of atheroscle-
rotic plaque [31]. Transplantation of pro-inflammatory 
microorganisms can reduce the types of microorgan-
isms that produce short-chain fatty acids  (SCFA) in 
mice, enhance the inflammatory response and pro-
mote the formation of atherosclerosis [32]. Certain 

Fig. 1  Some intestinal metabolites promote the development of atherosclerosis. Choline in food is transformed into trimethylamine by the action 
of intestinal bacteria, and the latter is formed into TMAO by the action of a specific group of bacteria containing the CutC gene. TMAO evokes the 
release of intracellular calcium stores and promotes platelet activation and atherosclerotic plaque formation. Phenylalanine in food is converted 
to phenylacetic acid by the action of porA gene-containing enteric flora, which synthesizes PAGln or PAGly with glutamine or glycine and binds to 
platelet adrenergic receptors to induce platelet hyperreactivity and promote atherogenic plaque formation



Page 3 of 13Hu et al. European Journal of Medical Research           (2022) 27:73 	

kinds of bacteria such as L. rhamnosus GG (LGG) or 
pharmaceuticals telmisartan (TLM) supplements can 
alter bacterial genera and reduce α-diversity, which has 
significant correlations to atherosclerotic plaque size, 
plasma A-FABP and cholesterol level [33]. (3) Certain 
metabolites such as trimethylamine N-oxide (TMAO), 
which is produced by intestinal flora, promotes athero-
sclerotic plaque formation by activating platelet activ-
ity. The TMAO pathway is considered to be the most 
direct pathway, where intestinal flora influences the 
process of atherosclerosis [34, 35].

Choline from the diet is metabolized by intestinal 
microorganisms to produce trimethylamine, which is 
oxidized to TMAO after entering the liver via liver-gut 
circulation. TMAO promotes the release of intracellu-
lar calcium ions extracellularly in a platelet activator-
dependent manner, which thereby mediates the high 
reactivity of platelets and increases the risk of throm-
bosis [36, 37].

In addition to animal experiments, clinical stud-
ies have also shown that TMAO is involved in the 
occurrence of atherosclerosis, which is significantly 
associated with the risk of cardiovascular and cerebro-
vascular events. In a study conducted by Tang et  al. 
[38] which involved 4007 subjects who were followed 
up for 3  years to study the relationship between the 
concentration of plasma TMAO and the risk of cardio-
vascular/cerebrovascular events. The results showed 
that TMAO was positively correlated with the risk of 
thrombosis in a dose-dependent manner, and this effect 
was independent of traditional cardiovascular and 
cerebrovascular disease risk factors. Yet in the study 
of Yin et  al. [39] did not find elevated plasma TMAO 
levels in stroke patients or transient ischemic attack 
(TIA) patients. Their study also analyzed the differ-
ences in intestinal flora composition and TMAO levels 
in asymptomatic patients with atherosclerosis, stroke 
and TIA. The results showed that the levels of TMAO 
and the composition of intestinal flora were similar in 
asymptomatic atherosclerosis patients, with or without 
carotid plaques. However, the composition of intestinal 
flora in patients with stroke or TIA was significantly 
different from that of patients with asymptomatic ath-
erosclerosis. Notably, even though the TMAO level 
was not as high as expected, the level was still lower 
than that observed in patients with asymptomatic ath-
erosclerosis. Tang et  al. [38] explained that the medi-
cations used to treat stroke may reduce the level of 
TMAO. Therefore, the correlation between intestinal 
flora product, TMAO, and ischemic stroke needs fur-
ther confirmatory research. The microbial cut C gene 
was found to mediate the TMA/TMAO conversion, as 
well as increase infarction size; thus this gene can be 

thought to promote impaired neurological function by 
genetically engineering modified bacterial transplants 
in germ-free mice. In other words, gut microbes can 
exacerbate infarcts by producing TMAO [40].

In addition to TMAO, other intestinal flora metabolites 
that can activate platelets include PAGln and PAGly [41]. 
They represent phenylacetic acid, which is consumed 
from the diet, subsequently converted into phenylalanine 
by intestinal flora and ultimately into glutamine and gly-
cine, respectively. PAGln and PAGly are similar in struc-
ture to adrenergic receptors and can, therefore, bind to 
platelet β2 receptors in the body, able to activate plate-
lets to promote thrombosis. However, some studies have 
found that PAGly can activate the Gαi/PI3K/AKT sig-
nal cascade by stimulating β2AR, thereby inhibiting cell 
apoptosis and reducing the area of myocardial infarction 
caused by I/R injury. However, high-dose treatment will 
cause a higher mortality rate [42]. It can be observed that 
the role of PAGly in the body is closely related to its dose. 
However, the role of PAGly after ischemic stroke, and 
the mechanism by which it functions, have not yet been 
reported, and needs further exploration (Fig. 1).

It is worth mentioning that Porphyromonas gingivalis, 
located in the oral cavity, is also found to be associated 
with the development of stroke [43, 44].

Changes in intestinal flora can affect brain repair 
after stroke
The “flora-intestine-brain” axis is a new concept. It is  a 
prerequisite hypothesis, which showed that in the model 
of middle cerebral artery occlusion (MCAO), intestinal 
flora has a significant impact on stroke prognosis.  The 
study of Benakis et  al. [45] declared that flora imbal-
ance, caused by antibiotics, could reduce the α-diversity 
of intestinal flora and improve prognosis; the histol-
ogy showed a decrease in the volume of ischemic tissue. 
This effect is mainly due to the decrease of IL-17+γδT 
cells and the increase of Treg cells in the small intestine, 
thereby limiting the infiltration of harmful substances 
into the brain membrane of IL-17+γδ T cells. Sun et al. 
[46] found that butyric acid bacteria can reduce cerebral 
I/R injury in diabetic mice by regulating intestinal flora. 
16S rRNA gene sequencing, combined with LC–MS anal-
ysis, showed that in rats with IS, the intestinal flora and 
plasma metabolites changed. Moreover, it showed that 
the abundance of Proteobacteria Firmicutes and Deferri-
bacteres was significantly different between Sham and IS 
groups. The gut microbiota was strongly correlated with 
the dysregulated metabolites [47]. Xu et  al. [48] found 
that MCAO mice extended rapid and dynamic dysbiosis. 
The increase of Enterobacteriaceae bacteria aggravates 
cerebral infarction by enhancing systemic inflamma-
tion. Related studies have shown that dysregulation of 
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microflora is one of the reasons for poor prognosis of 
patients with primary stroke. The use of aminoguani-
dine or superoxide dismutase to reduce nitrate produc-
tion, or by using tungstate to inhibit nitrate respiration, 
can inhibit the overgrowth of Enterobacteriaceae bacte-
ria, reduce systemic inflammation and reduce risk of cer-
ebral infarction. These therapeutic effects are dependent 
on the gut microbiota, which indicates the translational 
value of the brain-gut axis in the treatment of stroke. 
Wang et al. [49] proved that in patients with T2D, after 
AIS, the serum levels of lipopolysaccharide (LPS) and 
D-lactate (DLA) clearly increased; moreover, she showed 
that butyrate-producing bacteria including Lachnospira, 
Blautia, and Butyricicoccus decreased. After BS was 
replenished the mice showed lower levels of proinflam-
matory cytokine and exhibited a significantly smaller 
infarction volume. It also showed that fecal transplanta-
tion could attenuate ischemic stroke injury by protecting 
the BBB. MCAO models of pigs [50], after 1 day of stroke, 
also showed a reduction in the microbial diversity, and on 
the third day the lesion volume was negatively correlated 
with microbial diversity. In relation to the models, the 
abundance of Proteobacteria was significantly increased, 
while Firmicutes and lactic acid bacteria, Lactobacillus, 
decreased on the third day poststroke. The aforemen-
tioned results (from a pig model) suggest the plasticity of 
the gut microbiome during the acute period of stroke and 
its influence on brain damage.

Changes in intestinal mucosal permeability affect 
stroke outcome
An intact intestinal mucosal barrier is an important 
defensive line for the body to protect against adverse 
external factors. When acute ischemic stroke occurs, 
the intestinal mucosal permeability is altered for various 
reasons, generally manifesting as increased permeability. 
This results in a large number of toxic products that enter 
the blood circulation through the intestinal mucosa, 
which then enter the nervous system causing damage. 
The impairment of intestinal barrier function in patients 
with cerebral infarction may be related to the following 
factors, outlined in the next three paragraphs.

Ischemic stroke leads to reduced expression of intestinal 
junction proteins
The intestinal mucosa, including the structure of epithe-
lial tight junctions (TJs), are composed of multiple pro-
tein subunits [51], of which Claudins and occludins are 
particularly important because of their key structural 
roles. Many studies [52, 53] have examined their expres-
sion levels as a marker of altered mucosal permeability. 
There is a reduced expression of zonula occludens-1 (ZO-
1), occludin, and claudin-1 after stroke [54]. Cerebral 

infarction decreases the expression of intestinal mucosa 
tight junction proteins, Occludin, which leads to the 
destruction of tight junctions, damages the intestinal bar-
rier, and increases intestinal permeability. Xia et al. [55] 
found that compared with the Sham group, the expres-
sion of ZO-1, VE-cadherin, Occludin and Claudin-5 in 
the rats from the MCAO group appeared to be reduced 
in different degrees. Shengui Sansheng Pulvis (SSP) 
administration restored the expression of these pro-
teins in the intestinal mucosal epithelium while reducing 
MCAO-induced brain edema, and increased VIPR1/2 
expression in the OGD blood–brain barrier models, 
reducing endothelial injury.

Increased intestinal epithelial permeability induced 
by microRNA after stroke
MicroRNA is a kind of small non-coding ribonucleic 
acid that participates in various pathophysiological pro-
cesses of the body. MiR-21-5p is one type of miRNAs. 
Wu et  al. [56] found that miR-21-5p was significantly 
increased in the serum of patients with cerebral infarc-
tion. Studies have found that miR-21-5p can increase 
intestinal epithelial permeability by up-regulating small 
GTPase-ADP-ribosylation factor 4 (ARF4) [57]. The abil-
ity of miR-21-5p to increase vascular permeability has 
been similarly demonstrated in studies of colorectal can-
cer and may be related to its targeting of Krev interaction 
trap protein 1 (KRIT1) and activation of the β-catenin 
signaling pathway.

Dysregulated intestinal flora, after stroke, produces toxic 
metabolites acting on the intestinal mucosal epithelium
Kurita et al. [58] detected LPS and K99 pili protein locali-
zation in the brain 24 h after stroke, existing in the Iba-1 
positive microglia, neurons as well as endothelial cells. 
The result indicated that ischemia-induced Enterobac-
teriaceae proliferation led to increasing luminal LPS 
concentration, weakened the tight junction of epithelial 
cells and promoted LPS circulatory system entry. Singh 
et al. [59] found that stroke could affect the composition 
of intestinal flora. When intestinal flora is imbalanced, 
opportunistic pathogens can produce a variety of harm-
ful substances, such as lipopolysaccharide. Lipopoly-
saccharide is the cell wall component of Gram-negative 
bacteria, also known as endotoxin, which can affect the 
tight junction of intestinal epithelium and increase intes-
tinal permeability by mediating the Toll-like receptor 
(TLR)4/MyD88 signal transduction pathway. TLR-4 posi-
tive cells started to increase in number 1 h after MCAO 
and continued until 22 h. Specific knockdown of TLR-4 
was able to produce a protective effect against ischemic 
stroke. It is evident that TLR-4 is an important target 
in stroke [60]. Gut microbiota disruption could cause 
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cerebral endothelial dysfunction through eNOS activity 
decrease [61]. Stroke can lead to increased abundance 
of Gram-negative Enterobacteriaceae bacteria and fur-
ther increased circulatory LPS levels [58, 62], which can 
trigger inflammation via TLR-4 [63] and alter intesti-
nal mucosal ligand protein expression levels leading to 
a leaky gut. Meanwhile, LPS induces an inflammatory 
response, which further aggravates stroke injury. This 
suggests that stroke and altered intestinal flora are bipha-
sic. In the cerebral artery lysates of antibiotic-treated rats, 
the eNOS-P/total eNOS ratio was decreased compared 
to the control subjects. Using antibiotics cause the dis-
ruption of gut microbiota and as a result lead to cerebral 
endothelial dysfunction. However, this study is opposite 
to the study of Benakis et al. [45]. The intestinal barrier 

is one of the basic defence lines of the body against the 
external environment, which plays an important role in 
ensuring the stability of the body internal environment. 
Blood DAO (diamine oxidase), D-LAC (Dlactate) and 
endotoxins [64] are reliable indicators that reflect the 
function of the intestinal barrier. Mice with hyperurice-
mia were found to possess a damaged intestinal barrier 
as well as an enhanced intestinal permeability, which lead 
to an induced inflammatory process. Elevated serum uric 
acid levels were seen to be associated with an increased 
risk of acute ischemic stroke; however, the mechanism 
is not clear. Potentially, by combining the changes to the 
characteristics of intestinal permeability acute ischemic 
stroke and hyperuricemia, we could elucidate the corre-
lation. In fact, Crapser et al. [65] had the similar results 

Fig. 2  Post-stroke intestinal changes and their impacts on cerebral organization. Stroke causes a reduction in the expression of intestinal epithelial 
tight junction proteins including VE-cadherin, Occludin and Claudin-5; more LPS is produced by post-stroke intestinal flora, which induces damage 
by binding to TLR4/MyD88 in the downstream inflammatory response; LPS also contributes to an increase in eNOS-P/total eNOS, causing vascular 
endothelial damage; stroke causes an increase in miR-21-5p and further upregulated ARF4; the aforementioned factors combined lead to increased 
intestinal mucosal permeability and leaky gut. The blood LPS, DAO and D-LAC elevated after vascular endothelial injury and BBB endothelial injury 
accompanied by VIPR1/2 decreasing
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in animal studies. However, several studies [66] have con-
cluded there is insufficient evidence for changes in the 
morphology and expression of permeability proteins in 
the intestinal mucosal epithelium after MCAO (Fig. 2).

Cytokines released by gliacytes and other cell 
type, post ischemic stroke, can either aggravate 
or relieve brain damage
Ischemia and hypoxia in brain tissue from various causes 
trigger a series of cascade reactions, including glial cell 
activation and release of inflammatory mediators, leading 
to the activation of endothelial cells, which express adhe-
sion molecules and recruit inflammatory and immune 
cells from the circulation to the site of stroke injury. The 
simultaneous release of DAMPs/cytokines as well as the 
activation of the vagus nerve results in intestinal motil-
ity disorders, intestinal disorders and increased intestinal 
permeability. Vila et  al. [67] found that serum concen-
trations of IL-6 and TNF-α, at the time of admission, in 
stroke patients are strongly associated with early neu-
rological deterioration. However, the specific sources of 
IL-6 and TNF-α were not mentioned in this study. Sev-
eral studies [68–70] have shown that the period after an 
episode of a stroke can cause increased expression of 
pro-inflammatory inflammatory factors in the serum and 
within brain tissue. This exacerbates local or systemic 
inflammatory responses and further aggravates brain tis-
sue damage. Primary astrocytes were seen to express only 
low levels of TLR2, TLR4, TLR5 and TLR9 under rest-
ing culture conditions, but their mRNA expression levels 
were significantly upregulated when cells were exposed 
to specific bacteria-derived ligands [71]. TREM1 is pro-
duced by Ly6C+MHCII+ macrophages in the lamina pro-
pria of the intestinal mucosa after a stroke; its ability to 
increase mucosal epithelial permeability promotes bacte-
rial translocation across the intestinal barrier into brain 
tissue [72]. This reflects the fact that peripheral TREM1 
induces enhanced pro-inflammatory responses to brain-
derived and gut-derived immunogenic components. 
Inhibition of TREM1 is able to reduce brain damage 
through this specific innate immune pathway. Early acti-
vation of PMN in ischemic brain tissue may be caused 
by the rapid release of danger-associated molecular pat-
terns (DAMPs) and eventually leads to the secretion of 
IL-1b [73–75]. This is a process that promotes the onset 
of inflammatory vesicle formation by activating immune 
cell surface receptors and further activating the NLRP3 
pathway. If the infiltration of the penumbra PMN is 
removed after the onset of stroke, the initial brain dam-
age does not have a significant impact on the behavioral 
performance of the animal [76].

It is not difficult to discover that an inflammatory 
state is critical to evoke the neurotoxic potential of the 

invader. Resting-state PMN showed no neurotoxic activ-
ity in brain slices without ischemic pre-injury, and only 
lipopolysaccharide-activated PMN exhibited this effect. 
A similar increase in TREM-1 expression can occur dur-
ing intestinal ischemia–reperfusion, but the use of the 
inhibitor, LP17, delays death in experimental animals 
[77]. The intestinal tract is the main immune organ that 
is equipped with the largest immune cell pool, account-
ing for more than 70% of the whole immune system [78]. 
Displaced intestinal microorganisms can: (1) stimulate 
intestine-related lymphoid tissue, stimulate the differen-
tiation of immune cell subsets; (2) promote the occur-
rence of inflammatory response; and (3) aggravate the 
possibility of systemic inflammatory response and multi-
ple organ dysfunction.

Microglia are derived from the myeloid cells of the yolk 
sac, which are localized to the central nervous system 
early in individual development and are resident immune 
cells of the central nervous system [79]. The dendritic 
and axonal morphology of germfree mouse neurons is 
affected during development and such developmental 
defects are often associated with an immature microglial 
phenotype. This means gut microbial colonization during 
the development of the brain is crucial [80, 81]. Micro-
glia are capable of proliferation and polarization and can 
change when in a pathological situation from a branching 
resting state to an amoeboid activated state [82–84].

In addition, T lymphocytes play an important role in 
the stroke process. The dysbiosis, induced by the acute 
phase of stroke, promotes pro-inflammatory Th1 and 
Th17-mediated immune responses derived from intesti-
nal Peyer’s lymph nodes and contributes to brain injury 
[59, 85]. When intestinal microecological homeosta-
sis is achieved after FMT, the number of Treg increases 
within the ischemic brain region [86]. In chronic colitis, 
combined with stroke, intestine-derived CD4 + T cells 
migrate from the intestine to the meninges and may 
interact with meningeal macrophages, leading to non-
intestine-derived CD4+T cell infiltration and M1 and 
M2 microglia/macrophage imbalance, exacerbating brain 
injury in ischemic stroke [87]. At the same time, it can 
also promote the migration of immune cells from the 
intestine to the injury site of the cerebral infarction, and 
aggravate local injury. This may provide an insight into 
the positive correlation between the degree of intestinal 
barrier dysfunction and the degree of neurological deficit 
in patients with cerebral infarction.



Page 7 of 13Hu et al. European Journal of Medical Research           (2022) 27:73 	

Bacterial ectopic location after stroke leading 
to the occurrence of infections in other tissues 
and organs
Stroke can lead to ectopic bacterial infections. A neuro-
central injury such as a stroke can lead to a disruption of 
the original balance between the CNS and the immune 
system, secondary immunodeficiency or immunosup-
pression. Ultimately this leads to the development of 
infection [88, 89]. The bacteria belonging to ectopic 
infections are almost always species pertaining to bac-
teria native to the intestinal flora that enter the blood 
circulation and invade other tissues after stroke. One 
reason for this is due to increased permeability of the 
intestinal mucosa, colonizing and causing infection. The 
study of Wen SW et  al. [90] demonstrates that exacer-
bated dysfunction of the intestinal barrier in advanced 
age promotes translocation of gut-derived bacteria and 
contributes to the increased risk to post-stroke bacte-
rial infection. Tascilar et al. [91] found that in the animal 
MCAO model, there is post-stroke intestinal mucosal 
barrier disruption and bacterial translocation, which 
includes lung, liver, spleen and mesenteric lymph nodes. 
The most common pathogen is coagulase-negative 
Staphylococcus aureus. The impaired intestinal bar-
rier function creates favourable conditions for intestinal 
microbial translocation.

However, Oyama [66] suggested no significant differ-
ences in intestinal mucosal changes in animals during 
the acute phase of stroke; moreover, their lung bacterial 
colonization may be related to the inadvertent aspira-
tion of intestinal flora into the trachea and subsequently 
into the lungs during the operation of gavage. In addition, 
pro-stroke stress is also associated with bacterial trans-
location from the colon into other tissues (e.g. mesen-
teric lymph nodes, liver, and the spleen.), increases the 
inflammatory phenotype of the intestinal mucosa (e.g. 
COX-2, iNOS.) and reduces the amount of local secre-
tion of IgA [92]. This pro-stroke stress is linked to stroke 
outcome [93, 94]. Regardless, post-stroke infection is the 
most common complication, as well as being the most 
serious complication; its mechanisms need to be further 
explored.

Changes of intestinal flora are closely related 
to post‑stroke depression
The brain-gut axis is a two-way regulatory axis of the 
interaction between the brain and the gastrointestinal 
tract. Gastrointestinal discomfort is often accompanied by 
emotional reactions, which in turn can activate the neural 
activities of the related central nervous system parts. At the 
same time, the regulatory information is transmitted down 
to the gastrointestinal tract through the brain-gut axis, 
changing its dynamic and secretive functions, activating 

intestinal mucosal immunity and affecting the intesti-
nal mucosal barrier function. For example, in patients 
with gastroesophageal reflux, there is a strong correlation 
between anxiety and depression as well as gastrointestinal 
symptoms, such as gastric mucosal erosion. Furthermore, 
psychological or antidepressant treatment is effective for 
some patients [95, 96]. In psychiatric patients, depression 
and generalized anxiety disorder are often accompanied 
by gastrointestinal discomfort [97], and many patients 
with generalized anxiety disorder are often first diagnosed 
with a gastro-enterologic issue [98]. Thus, brain-gut axis 
dysfunction may play a role in the development of men-
tal illness. However, regarding the underlying mechanism, 
current research tends to point towards the involvement of 
the gut flora [99, 100]. Under pathological conditions, the 
permeability of the BBB changes [101], various inflamma-
tory factors enter the central nervous system. The inflam-
matory signal is transmitted to the central nervous system, 
and glial cells are activated through the NF-κB pathway to 
promote the occurrence of depression [102, 103].

Post-stroke depression is very common in the post-
stroke population [104]. Patients suffering from the post-
stroke phase, combined with cognitive impairment and 
depression, tend to have dysbiosis of the intestinal flora. 
PSCCID patients, compared to non-PSCCID patients, 
exhibit increased abundance of Proteobacteria, including 
Gammaproteobacteria, Enterobacteriales and Enterobac-
teriaceae, and decreased abundance of several short-chain 
fatty acid producing bacteria [105].

The administration of LPS was found to mimic depres-
sion-like behaviour in experimental animals. A significant 
inflammatory response in the central nervous system was 
observed, suggesting inflammatory responses induced 
by bacterial products such as LPS can affect the central 
nervous system and promote the development of depres-
sion [106, 107]. Chronic mild stress causes elevated IL-1β, 
COX-2 and PGE2 in blood and decreased 15d-PGJ2 
expression in brain tissue. The use of antibiotics can reduce 
inflammation by inhibiting the TLR signalling pathway, so 
this target can be studied for depression [108]. Blocking 
or inhibiting toll-like receptors involved in central nerv-
ous system inflammation, and depression-like behaviour, 
induced by chronic mild stress, can both lead to improve-
ment of inflammation and animal behavior [109–111]. 
Depression and post-stroke depression have similar clini-
cal manifestations. Current studies have concluded that the 
pathogeneses of both are similar. However, recent studies 
also have shown the association between depression and 
gut flora are not specific to post-stroke depression, advising 
that research in this area needs to be further investigated. 
Therefore, further animal experiments and clinical studies 
are needed to explore the effect of intestinal flora on post-
stroke depression.
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Mechanisms that can exert a protective effect 
against stroke through intestinal flora
The intestinal flora is also capable of producing metabo-
lites that facilitate stroke recovery, of which SCFA is one 
of the most widely and intensively studied molecule. 
SCFA in humans includes high levels of acetic, propi-
onic, and butyrate [112], as well as low levels of formate, 
valerate and caproate [113]. SCFA is actively absorbed 
into the circulation via monocarboxylate transporters 
(MCTs) [114] and can cross the blood-brain barrier [115, 
116]. Clinical studies have found that lower SCFA levels 
are strongly associated with stroke and stroke-associated 
pneumonia (SAP) [117]. Fecal transplantation or SCFA 
supplementation improve stroke prognosis, with butyric 
acid having the most significant effect, increasing the 
abundance of beneficial lactobacilli and reducing intesti-
nal mucosal permeability [118]. The intestinal microbiota 
of young and older mice was examined separately. We 
identified a high concentration of SCFA, and its produc-
ing strains, in the stool of young mice. SCFA-producing 

bacteria (Bifidobacterium longum, Clostridium sym-
biosum, Faecalibacterium prausnitzii and Lactobacillus 
fermentum) transplantation resulted in increased intesti-
nal mucosal integrity, increased SCFA in the blood and 
brain tissue, increased Treg in brain tissue, decreased 
IL-17 + γδ T cells, reduced neuro-inflammation, and sig-
nificantly improved behavioural scores [119]. Sadler et al. 
[120] reported a number of notable findings: (1) SCFA 
levels in the blood decreased after stroke; (2) artificial 
SCFA supplementation reduced the expression of CD68 
in Iba-1+ microglia, as well as decreased the number of 
microglia activation, which reduced the inflammatory 
response in the brain group after stroke. This in turn was 
stipulated to enhance synaptic plasticity in the cortical 
semidark zone and improve stroke prognosis and corti-
cal reconstruction. This suggests that SCFA, produced by 
intestinal flora, may serve as the basis of metabolites for 
the brain-gut axis to function. Not only complex short-
chain fatty acids, but also SCFA species such as butyrate 
alone can exert neuroprotective effects [121–123].

Fig. 3  Certain intestinal flora metabolites promote post-stroke recovery. Certain foods, such as high-fiber foods, can be metabolized by intestinal 
flora to produce SCFA, which is transported and absorbed by MCTs and enters the brain, reducing IL-17 + γδ T cells, diminishing activated microglia, 
and increasing synaptic plasticity; bile acids are transformed by intestinal bacteria into primary bile acids, which are then transformed into 
secondary bile acids and enter the blood or cross the blood–brain barrier, bind to receptors and upregulate SOD and GPX Tryptophan in food can 
be metabolized by enterobacteria to indole, which binds to intestinal mucosal aromatic hydrocarbon receptors and promotes the growth rate of 
human neural progenitor cells (hNPCs) by promoting β-catenin, Neurog2, and VEGF-α expression
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Once bile is secreted in the intestine, bile acids are 
metabolized into a pool of bile acid by the action of 
intestinal flora. After metabolism, primary BAs such 
as CA, CDCA and UDCA are formed, and further sec-
ondary BAs including DCA and LCA are produced. 
These metabolites can bind to various receptors in the 
brain, such as FXR [124], TGR5 [125], NMDAR [126], 
and PXR [127], subsequently these molecules exert bio-
logical activities. TUDCA injection 1  h after ischemia 
increased intracerebral bile acid levels, reduced infarc-
tion size, and decreased neuronal apoptosis by increas-
ing mitochondrial stability. This protective effect 
was maintained for at least 7  days [128]. TUDCA can 
reduce serum glutamate, TG, TC, and LDL-C levels, 
decrease inflammatory factor expression, increase SOD 
and GPX expression, reduce oxidative stress damage, 
and down-regulate the Nrf2 signalling pathway and 
apoptotic protein levels in cerebral ischemic rats, Thus, 
these effects exert neuroprotective effects [129]. Con-
sidering the wide variety of metabolites of bile acids 
and their ongoing discovery, the role of other species 
of bile acids in ischemic stroke needs further investiga-
tion. In addition, the neuroprotective effect of benefi-
cial bile acid species can be induced by modulating the 
intestinal flora.

Tryptophanase expressing microorganisms in the 
intestine converts tryptophan to indole, which upon 
binding to aromatic hydrocarbon receptors promotes 
the expression of β-catenin, Neurog2, and VEGF-α and 
promotes neurogenesis in the hippocampus [130]. This 
is highly consistent with the findings of Möhle et  al. 
[131], which found that antibiotic treatment reduced 
hippocampal neurogenesis and memory formation 
in adult mice; however, adoptive transfer of Ly6C(hi) 
monocytes rescued this injury. Physiological levels of 
SCFA can promote the growth rate of human neural 
progenitor cells (hNPCs), and induce increased mito-
sis [132]. Promoting neurogenesis or neural stem cell 
regeneration can facilitate neurological recovery after 
stroke, thus intestinal flora may further improve stroke 
outcomes by promoting neural stem cell regeneration 
(Fig. 3).

In addition to the aforementioned, factors such as age 
at onset of stroke and gender [16, 133–135] can also 
influence the outcome by affecting the gut flora. MCAO 
using SD rats of different genders revealed that male 
SD rats had a more pronounced increase in intestinal 
mucosal permeability, more elevated pro-inflammatory 
cytokines in the blood, and possessed a higher mortal-
ity and neurological deficits compared to female SD 
rats [136]. Compared to bacteria, the role of fungi [137, 
138] in the gut has been poorly studied. In addition, the 
so-called intestinal dark matter, i.e. viruses [139, 140] 

(including phages), are also supposed to have a very high 
importance in the disease and less research has been 
done in this area. Hence factors that are able to alter gut 
flora need to be refined and subsequently integrated at an 
overall level in future studies. After all, each organism is 
inextricably linked to one another rather than independ-
ent of each other, and this is where the microbial-brain-
gut axis is specifically presented. In short, the research on 
intestinal flora and ischemic stroke is still in its infancy. 
Intestinal flora is expected to become a new target for 
nerve protection through many pathways in post-stroke 
injury repair. It is believed that the treatment mode tar-
geting intestinal flora in the future will play an important 
role in primary prevention and secondary prevention of 
ischemic stroke.
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